857323 Advanced methods in remote sensing: Machine learning and cloud computing (in Eng.)

Vorlesung und Übung
Vortragende/r (Mitwirkende/r)
Izquierdo-Verdiguier, Emma
Angeboten im Semester
Wintersemester 2023/24
Unterrichts-/ Lehrsprachen


Introduction to statistics and algebra.

Machine learning:
2.1 Feature extraction: Spatial, spectral and temporal.
2.2 Clustering: k means.
2.3 Supervised classification methods:
2.5.1. Decision trees (DT).
2.5.2. Random Forest (RF).
2.5.3. Support Vectors Machines (SVM).
2.5.4. Neural networks (NN).
2.4 Real world example I: Object detection and classification using very high spatial resolution.
2.5 Real world example II: Classification of hyperspectral images.

From local laptop to Cloud computing: Google Earth Engine.
3.1 Real world example III: Spring plant phenology products.
3.2 How to use machine learning in the cloud: remote sensing classification.
3.3 Real world example IV: Classification using very high spatial resolution data.
3. 3 Real world example V: mapping phenoregions and correlating temperature and satellite based phenometrics.

Inhaltliche Voraussetzungen (erwartete Kenntnisse)

Basics programming skills. Basic principles of remote sensing and image classification.


During this course the students will learn to design and deploy machine learning lgorithms as well as to use cloud computing for the analysis of remote sensing images. Both machine learning and cloud computing topics are explained using real world cases.
Noch mehr Informationen zur Lehrveranstaltung, wie Termine oder Informationen zu Prüfungen, usw. finden Sie auf der Lehrveranstaltungsseite in BOKUonline.