Alginate Core–Shell Capsules for 3D Cultivation of Adipose-Derived Mesenchymal Stem Cells

Sabrina Nebel

Mesenchymal stem cells (MSCs) are primary candidates in tissue engineering and stem cell therapies due to their intriguing regenerative and immunomodulatory potential. Their ability to self-assemble into three-dimensional (3D) aggregates further improves some of their therapeutic properties, e.g., differentiation potential, secretion of cytokines, and homing capacity after administration. However, high hydrodynamic shear forces and the resulting mechanical stresses within commercially available dynamic cultivation systems can decrease their regenerative properties. Cells embedded within a polymer matrix, however, lack cell-to-cell interactions found in their physiological environment.

Therefore, we developed a “semi scaffold-free” approach to protect the cells from high shear forces by a physical barrier, but still allow formation of a 3D structure with in vivo-like cell-to-cell contacts. With a relatively simple method we are able to create core–shell capsules by inverse gelation. The capsules consist of an outer barrier made from sodium alginate, which allows for nutrient and waste diffusion and an inner compartment for direct cell-cell interactions. So far we were able to characterize the capsule shell, establish a harvesting procedure and investigated viability and proliferation of human adipose-derived MSCs. These findings were published open access in MDPI Bioengineering (February 2022, see link below). In the future, we want to implement this encapsulation and cultivation technique in different scalable dynamic bioreactor systems, facilitating downstream procedures, such as cell harvest and differentiation into mature tissue grafts.

© ICTCT

This project is part of the PhD project of Sabrina Nebel with the title “Development of physiological potency assays for cell-based therapies”. For more information click here.

To read the original publication follow this link.