Fracture Across Scales and Materials, Processes and Disciplines (FRAMED)

Fracture of materials is problematic across many disciplines and scales, from large building collapses and costly preventative engineering fixes to the personal injuries caused by bone fracture. 80–90% of all structural failures occur as a result of fatigue and thus fracture mechanisms. Extensive testing of materials for fracture parameters before use in specific applications can be costly, wasteful and prohibitive when creating large structures. Computer models can be used to assess the probability and impact of fracture for a specific application and material, thus serving as a prediction tool. However, the models used are not accurate and reliable across multiple scales and across varying applications.
Fracture across Scales and Materials, Processes and Disciplines (FRAMED) aims to develop a predictive modeling framework for fracture which will be applicable across multiple scales and materials, and across multiple disciplines and processes; the target audience for applications are designers in the engineering field.
FRAMED will utilise the Marie Skłodowska-Curie Research and Innovation Staff Exchange (MSCA-RISE) scheme to create a multi-disciplinary consortium consisting of engineers, chemists, material scientists, physicists and applied mathematicians to create accurate and robust fracture models that can be used across a variety of scales, materials, processes and disciplines. We will enhance the research and development work to be undertaken, providing a solid foundation for long term international and inter-sectoral collaboration. High quality research and development work will be carried out via international and intersectoral secondments, facilitating the creation of professional networks and knowledge transfer.

More information: