Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2020-02-01 - 2024-01-31

Forschungskontext: Die Methylierung von Biomolkülen ist in viele zelluläre Regulationsprozesse involivert. Für Proteine und DNA-Moleküle sind bereits einige diesbezügliche Auf- bzw. Abbauwege bekannt. Allerdings wurden Methylgruppen auch auf Kohlenhydratstrukturen gefunden und für diese gibt es noch keine Informationen bezüglich Biosynthese oder Abbau. Kohlenhydratstrukturen spielen eine wichtige Rolle bei Erkennungsprozessen. Eine Modifikation der einzelnen Zuckereinheiten verändert die Spezifität von Erkennungs- und Bindungsvorgängen. Hypothesen/Ziele: Im vorliegenden Projekt möchten wir den Abbau von methylierten Glykanstrukturen untersuchen. Jene Organismen, die in der Lage sind solche Strukturen zu (bio)synthetisieren, müssen auch einen entsprechenden Mechanismus für deren Abbau aufweisen. In Schneckengeweben wurden Methylgruppen an protein-gebundenen Glykanstrukturen nachgewiesen. Daher werden in diesen Organismen auch Enzyme erwartet, die diese Strukturen metabolisch abbauen können. Ansatz/Methoden: Eine solche Demethylierungs-Enzymaktivität wird im Rahmen des Projekts mittels nativen und synthetischen Substraten in Schneckenorganellen nachgewiesen. Danach werden Proteine, die die entsprechende Enzymaktivität aufweisen, gereinigt, sequenziert, kloniert und exprimiert. Sowohl das native als auch das rekombinante Protein werden auf ihre biochemischen und biophysikalischen Eigenschaften untersucht. Die Substratspezifitäten werden mit verschiedenen nativen Substraten und anderen methylierten Molekülen ermittelt um einen Überblick für potentielle Anwendungen zu erhalten. Mittels der Aminosäuresequenz wird in Datenbanken nach homologen Proteinen anderer Organismen, die bekannterweise auch methylierte Zuckerketten aufweisen (andere Mollusken und Parasiten), gesucht. Innovationsgrad: 1. Das detaillierte Wissen über die Funktion der Methylierung wird zu einem besseren Verständnis von Parasiten – (Zwischen)Wirt – Interaktionen führen. 2. Ein Enzym, das Methylgruppen von Zuckern abspalten kann, wäre ein wertvolles Werkzeug in der Forschung und auch ein Kandidat für Anwendungen in einigen anderen wissenschaftlichen Disziplinen.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-12-01 - 2023-11-30

N-Glykane diverser Muscheln und deren Rolle in molekularen Erkennungsprozessen In der Vergangenheit wurde durch Genomvergleiche verschiedener Organismen unser Wissen über die Entstehung der Arten auf eine neue Basis gestellt. Hingegen ist die Entschlüsselung von Protein-gebundenen Kohlenhydraten durch die komplizierte Analytik der Zuckerstrukturen ins Hintertreffen geraten, obwohl die Zucker, da sie die Zelloberflächen bei der Befruchtung, der Entwicklung, der Morphogenese und bei Wirt-Pathogen Wechselwirkungen bedecken, eine wichtige Rolle in diversen selbst versus fremd Erkennungsprozessen spielen. Dieses Projekt konzentriert sich auf die N-Glykane einiger Muschelarten (wie z.B. Austern), die sowohl als Proteinquelle für den Menschen eine ökonomische, aber auch durch ihre Filtrierfunktion eine ökologische Funktion innehaben. Allerdings reichern Muscheln nicht nur Nahrung sondern auch Pathogene an, wobei interessanterweise invasive Muschelarten wie die pazifische Auster gegenüber Krankheiten resistenter sind als die lokalen europäischen Arten. Die N-gebundenen Kohlenhydratstrukturen von Muscheln diverser Familien und Lebensräume werden daher im Detail massenspektrometrisch sowie mit enzymatischen und chemischen Methoden analysiert. Das Vorhandensein oder die Abwesenheit bestimmter Zuckermotife wird dann mit genomischen und Arraydaten korreliert. Besonders die resultierende Plattform von Glykanen aus verschiedenen Muschelarten und Geweben wird die funktionelle Analyse der Selbst-/Fremd-Erkennung zwischen Lektinen und Glykanen vorantreiben. Daraus soll ein besseres Verständnis dieser Proteinmodifikationen resultieren, denen eine besondere Rolle in der angeborenen Immunität zugeschrieben wird.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-03-01 - 2023-02-28

Neben den bekannten und gefürchteten Infektionskrankheiten Malaria, Tuberkulose und AIDS gibt es besonders in wirtschaftlich ärmeren Ländern weniger bekannte und trotzdem tödliche Erreger. Bei dem vorliegenden Projekt geht es um den Einzeller Entamoeba histolytica. Geschätzte 50.000 Menschen sterben jedes Jahr an Infektionen mit dieser Amöbe, die besonders den Darm und die Leber des Menschen angreift. Unser Projekt befaßt sich hauptsächlich mit einem komplizierten Oberflächenmolekül, von dem jede einzelne invasive Amöbe etwa 80 Millionen Kopien besitzt. Das Molekül trägt den komplexen Namen Lipopeptidophosphoglykan (LPPG), und zudem weitere Namen. Es besitzt einen Kern aus einem Eiweißmolekül, das mit einer aufwändigen Struktur in der Zellmembran verankert ist. In dem bis heute noch nicht identifizierten Kerneiweiß kommt die Aminosäure Serin häufig vor, an diesen Serinen hängen Phosphatgruppen, die unverzweigte Kohlehydratketten tragen. Wir waren ursprünglich auf das LPPG gestoßen, als wir monoklonale Antikörper aus Mäusen erzeugten, die gegen Oberflächenbestandteile der Amöbe geimpft waren. Ein solcher Antikörper, von uns EH5 genannt, bindet an das LPPG und kann mit Amöben infizierte Mäuse vor Leberabszessen schützen. Später konnten wir zeigen, dass der Antikörper eine bestimmte Aminosäuresequenz im Kerneiweiß von LPPG erkennt, und in den Daten des späteren Genomprojekts entdeckten wir ein Gen, das das Kerneiweiß von LPPG kodieren könnte. Ein Ziel unseres Projekts ist der Nachweis, ob genau dieses Genprodukt oder ein anderes wirklich den Kern des LPPG bildet. Ein weiterer Teil des Projekts soll untersuchen, wie die Seitenketten des LPPG gebildet werden. Sie bestehen aus Glukose, dem häufigsten Zuckermolekül, das jedoch in einer ungewöhnlichen Weise, wie bei der Oberfläche von Kariesbakterien, verbunden ist. Eine weitere Frage ist, wie die Amöbe die Basis dieser Ketten herstellt. Bei der Struktur des LPPG Moleküls fällt auch auf, dass Galaktose an verschiedenen Stellen eingebaut ist. Galaktose unterscheidet sich von Glukose nur dadurch, dass eine einzige Gruppe in eine andere Richtung weist. Das Enzym GalE mit dem Namen UDP-Glukose 4´-Epimerase kann UDP-Glukose in UDP-Galaktose umwandeln und damit die aktivierte Form von Galaktose erzeugen. Wir planen, das Gen für GalE in den Amöben abzuschalten, um zu untersuchen, welche Auswirkungen das auf das LPPG und generell auf die Amöben hat. Weiters suchen wir nach den Transferasen, die speziell den Zucker Galaktose einbauen können. Bei der Suche nach Enzymen für die Kohlehydratbiosynthese haben wir bereits alle Datenbanken durchforstet und eine Ausgangsliste erstellt. Eine tiefere Analyse zusammen mit einem Kollegen in Frankreich ist geplant. Insgesamt erwarten wir, dass wir in der Wiener Zusammenarbeit von der molekularen Parasitologie an der Medizinischen Universität mit der Kohlehydratbiochemie an der Universität für Bodenkultur einen signifikanten Beitrag zum Verständnis der Oberfläche von pathogenen Entamoeben liefern wird.

Betreute Hochschulschriften