Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2020-03-01 - 2022-11-30

Pflanzliche Zellwände bestehen aus einem komplizierten Verbund verschiedener Polysaccharid-Netzwerke, die essentielle Funktionen im Lebenszyklus der Pflanze übernehmen. Diese Zellwandpolysaccharide stellen interessante Ausgangsstoffe für erneuerbare Materialien und für die Produktion von Biokraftstoffen dar. Um die Wirtschaftlichkeit der Nutzung von Biomasse als erneuerbare Ressource zu verbessern, produzieren Forscher auf der ganzen Welt eine wachsende Anzahl von Pflanzen mit modifizierten Polysaccharid-Zusammensetzungen. Voraussetzung dafür ist jedoch eine genaue Kenntnis der Biosynthese dieser Polysaccharide. Ein von uns kürzlich hergestellter Glycan-Microarray, der mit synthetischen Zellwandoligosacchariden ausgestattet ist, bietet nun zum ersten Mal die Möglichkeit, einen Assay zum simultanen Screening verschiedener pflanzlicher Glycosyltransferasen zu entwickeln. Dazu soll der Microarray mit azido-funktionalisierten Zuckernukleotid-Donoren sowie potentiellen Glycosyltransferasen inkubiert und eingebaute azido-funktionalisierte Monosaccharide anschließend durch Click-Reaktion mit einem Fluoreszenzfarbstoff visualisiert werden. Im Rahmen dieses Projekts sollen die benötigten azido-funktionalisierten Zuckernukleotid-Donoren durch chemische Synthese auf effiziente Weise hergestellt werden.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2017-11-01 - 2021-08-31

Zahlreiche Antikörper, die gegen die oligomannosidischen Antigene der Hüllproteine von HIV gerichtet sind und neutralisierende Eigenschaften aufweisen wurden in den letzten Jahren beschrieben. Wie man derartige Antikörpereigenschaften induziert ist bislang jedoch ohne Erfolg geblieben. Eine mögliche Ursache dafür liegt im biosynthetischen Ursprung der viralen Kohlenhydrate die von der Wirtszelle stammen und somit zur Immuntoleranz führen. Entsprechende Glykokonjugate induzierten daher bisher nur Antikörper mit schwacher Bindung an die viralen Hüllproteine und ohne nennenswerte neutralisierende Eigenschaften. Im Projekt werden daher nunmehr bakterielle Analoga der Oligomannose-Strukturen mit dem Schwerpunkt der Glykane an Asn301 und Asn 332 von HIV gp120 synthetisiert um damit letzlich Antikörper mit ähnlichen Eigenschaften wie die neutralisierenden Antikörper der PGT-Familie zu erzeugen. Der in den Bakterien vorkommende D1 Arm wird unter Einsatz chemischer Synthesen um den D3 Arm erweitert. In Vorarbeiten konnte bereits gezeigt werden dass die entsprechenden Neoglykokonjugate eine hohe Affinität zum Antikörper PGT 128 aufweisen und im Serum von immunisierten Ratten HIV-neutralisierende Aktivität induzierten. Ziel des Projekts ist es durch die Synthese von Glykokonjugaten mit Oligomannose-Mimetika kreuz-protektive und neutralisierende Antikörper zu induzieren und als Strategie für die Vakzinentwicklung gegen HIV zu erproben.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2016-06-01 - 2019-05-31

Die Erkennung von Krankheitserregern, insbesondere Bakterien, durch das Immunsystem von Säugern ist Gegenstand weltweiter intensiver Forschung. Die Aufgabe der angeborenen Immunität besteht darin, eine Infektion während der ersten Tage, die bis zum Einsetzen der erworbenen Immunität vergehen, unter Kontrolle zu halten. Die Proteine des angeborenen Immunsystems sind für die Bekämpfung bakterieller Infektionen von entscheidender Bedeutung. Lipopolysaccharid (LPS) ist ein Hauptbestandteil der komplexen äußeren Wandschicht Gram-negativer Bakterien. Die proximale Region des bakteriellen Lipopolysaccharids, das Glykophospholipid Lipid A, wird von dem Transmembranprotein Toll-ähnlichen Rezeptor 4 (TLR4) und dem intrazellularem Enzym Caspase-4/11 erkannt, die zu den Rezeptoren des angeborenen Immunsystems in Säugern zählen. Erkennung von LPS durch TLR4 und Caspase-4/11 führt in erster Linie zur Aktivierung des angeborenen Immunsystems vom Wirtsorganismus und zur Beseitigung Gram-negativer Infektionen, kann aber bei schweren Erkrankungen lebensbedrohliche Symptomkomplexe wie Sepsis hervorrufen. Aktivierung von TLR4 ist auch an der Entstehung chronischer Entzündings-, Autoimmun- und Infektionskrankheiten beteiligt. Anderseits wird die Stimulierung von TLR4 mit Substanzen geringerer Toxität zur Impfstoffadjuvantentwicklung eingesetzt. Auf molekularer Ebene erfolgt die Aktivierung des TLR4 durch das Binden von Lipid A an der Bindungstasche von TLR4-Korezeptor Protein Myeloid Differentiation Factor (MD-2), was zur Dimerisierung von zwei TLR4/MD-2/LPS Einheiten in der Zellmembrane führt. Verschiedene Bakterienarten, die sich in der Zusammensetzung des Lipid´s A unterscheiden, können verschiedenen Grad an Dimerisierung des Rezeptorkomplexes hervorrufen. Das Bilden von TLR4/MD-2/LPS Dimeren löst eine entzündliche Reaktion aus und verursacht daher unterschiedlich starke Immunantworten. Bisher wurde ausschließlich die chemische Struktur des Lipids A für die Stärke der entzündlichen Reaktion verantwortlich gemacht. Im Mittelpunkt des Projektes steht die Entwicklung neuer Lipid A Mimetika, in welcher das flexible und mit drei Bindungen verknüpfte Glucosamin Disaccharid des Lipid A durch ein steifes und mit zwei Bindungen verknüpftes Disaccharid ersetzt ist. Die Sekundär-Konformation von Lipid A Mimetika sollte dabei die entscheidende Rolle in der Aktivierung des TLR4 Komplexes und Caspase-4/11 spielen. Mithilfe gezielter chemischer Modifikationen an synthetischen Lipid A Mimetika wird versucht, molekulare Grundlagen der Erkennung von Lipopolysaccharid durch TLR4 und Caspase-4 herauszufinden. Die Ergebnisse sind von enormer Bedeutung für die Entwicklung neuer Immuno-Therapeutika für die Bekämpfung der Autoimmun- und Entzündlichen Erkrankungen sowie für die Erforschung der effizienten Strategien zu Herstellung neuer Impfstoffadjuvanten.

Betreute Hochschulschriften