Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2023-10-01 - 2025-09-30

In this project, procedures for the development of digital twins for the implementation of efficient sustainability analyses will be developed and tested, taking into account the national requirements of the DACH countries. A specific implementation of digital twins and selected sustainability-related indicators for the evaluation and optimisation of the operation and dismantling of civil engineering structures with regard to a cycle-oriented resource management will be carried out. The focus is on decision support for the operators of engineering structures with regard to planning, construction, operation and dismantling. On the basis of open source developments, an implementation guide is also being created to enable the transfer and further development of the results. For the demonstration, digital twins of up to three engineering structures will be created, enriched with data and used for the calculation of relevant indicators for sustainability analysis. In addition, advice will be given on which data should be collected in the future and integrated into sustainability analyses so that data gaps can be closed and transparent decisions can be made.
Research project (§ 26 & § 27)
Duration : 2024-03-15 - 2024-07-14

Analysing and assessing existing avalanche-relevant geocommunicative implementations. This process aims to identify the strengths and weaknesses of current implementations in order to gain valuable insights for further development. The objectives in the areas of geo-communication, usability, geodata basis and practical relevance are narrowed down and defined. The results of the evaluation form the basis for the design of optimised methods and workflows as part of an overall project yet to be defined.
Research project (§ 26 & § 27)
Duration : 2024-03-01 - 2028-02-29

LOC3G project seeks to advance the knowledge of multiscale and multiphysics localization phenomena in porous geological media, with the aim of creating new predictive models for geophysics, geohazards, and geoengineering. The consortium combines a diverse array of expertise, including geological surveys, constitutive modeling and numerical simulations, laboratory tests, and real-world applications such as CO2 storage and geo-resource/energy exploitation. The project will incorporate innovative research techniques and utilize advanced constitutive models and next-generation numerical approaches to investigate the localization of deformation in geological media. The ultimate goal is to provide cutting-edge knowledge and interdisciplinary training to improve the capacity for research and technology globally, and to provide practitioners with the tools they require to tackle relevant problems in their fields. Additionally, LOC3G is expected to have a significant impact on addressing EU energy crisis caused by geopolitical issues.

Supervised Theses and Dissertations