Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2024-01-01 - 2026-12-31

Due to the accelerating hydro-climatic extreme events, there is high demand on adjusting water resources management so that water quantity and quality are secured through a combination of different techniques integrating land-use, surface water, groundwater, and ecosystem management. The Project Interlayer focuses on how water retention technologies can contribute to improve resilience, adaptation and mitigation to hydroclimatic extreme events while increasing water availability and quality by balancing groundwater and surface water management practices. It is related to shared interdisciplinary knowledge in the complex interlink of flood protection, safeguarding water availability and quality to mitigate and adapt to hydroclimatic extreme events. Interlayer will develop and demonstrate novel water retention technologies that favor slow hydrology entrance in the system for adaptation of European river basins to hydro-climatic extreme events and simultaneously obtain resilience in agricultural productive land, the adjacent ecosystems, and downstream cities. Farmland can stay productive despite hydro-climatic extreme events through smart water harvesting methods, adapted soil and cropping management, improved ecosystem management, temperature buffering by means of appropriate riparian vegetation management and establishment of adequate refugia system for biodiversity (including definition of appropriate protected pools). Risk of urban flooding is reduced by parking of water not only in the river valleys upstream from the city, but also in the highlands of the catchments, reducing runoff from uphill as part of the water harvesting to address drought. Hydro-climatic water balance models will be demonstrated to describe the exchange of water within the river basins between highland and lowland and between shallow and deep groundwater, in response to suggested changes in land-use management.
Research project (§ 26 & § 27)
Duration : 2024-05-01 - 2027-04-30

The project will establish an Integrated Research Centre (IREC) for advanced numerical and analytical analysis of reliability, performance, and service life of existing and new civil engineering structures such as bridges, tunnels, protective barriers, etc. The IREC will aim to integrate the knowledge and tools of the cross-border partners from BOKU-IKI and BUT-STM and offer a unified and efficient access and service to the target groups on both sides of the border. This synergy will enable easy cross-border transfer of parts of solutions to complex problems. Within the framework of its activities, the Centre will offer both knowledge transfer in the form of seminars and publications and direct application and consultancy activities towards partners from engineering offices and infrastructure operators and owners. The common services, methods and tools will be intensified and adapted to the current needs of the target groups and thus prepared for an optimized operation of the research centre after the end of the project. The research centre will be autonomous after the end of the project, self-financed by the funds raised by providing services to the technical offices and the professional community. Without the joint involvement of the two cross-border partners, the required comprehensiveness and availability of the services offered could not be achieved, and thus the necessary change in the approach of the professional community to the application of modern advanced numerical methods to improve and streamline the design and assessment of building structures and to ensure sustainable and reliable transport infrastructure. For the duration of the project, the research centre will consist exclusively of two founding project partners. Future expansion of the research centre with additional partners from research institutions or industry is not excluded, in line with the needs of future developments in the field and the needs of the programme regions.
Research project (§ 26 & § 27)
Duration : 2019-01-01 - 2024-12-31

The objectives for this expedition are focusing on a better scientific understanding of Lake Altaussee, Austria through its cultural, geological, and ecological significance. The priority was to obtain a multi-beam sonar map of Lake Altaussee and a sub-bottom profiling of the lake bed. Biologists from the Scripps Institution of Oceanography, San Diego, California, and from the Paul Ricard Oceanographic Institute (France) collected samples from all water-entry points and from the lake surface area. At the deepest part of the lake (74.2 m), a Deep Trekker remotely operated vehicle (ROV) provided an important view of a geological occurrence: images of colored sediment and rock suggested the presence of iron ore. The Team also collected water, sediment, snow and air samples destined to be tested for microfibers, with the goal being to understand the dynamics of these fibers and eventually, by collecting and analyzing two juvenile fish and a dozen copepods, determine if they enter the local food web.

Supervised Theses and Dissertations