Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2024-07-01 - 2025-06-30

The aim of this research project is to develop measures to improve Alterlaa's thermal performance and decarbonize its heating system as far as feasible. The potentials and risks are to be analyzed in technical, economic and social terms. The aim is to adopt a package of measures based on this. The motivation behind this submission is to develop the Alt Erlaa residential and retail park in Vienna's Liesing district, one of the largest residential complexes in Austria, into a climate-neutral neighborhood. Its builder and owner, the non-profit housing association GESIBA (represented by AEAG), has the concrete intention of implementing a comprehensive project in the near future with the components of thermal improvement and complete conversion from fossil fuels to climate-neutral energy sources. Preliminary work has already been carried out on the technical building planning. The exploratory study submitted in this case substantially strengthens and expands this project. The Alt Erlaa residential and retail park in Vienna Liesing comprises 3,200 apartments for approx. 9,000 people and 340,000 m² of gross floor area in three components. It was built between 1973 and 1985 by the non-profit developer GESIBA according to plans by the Viennese architect Harry Glück. On this scale, it is therefore a unique flagship project that demonstrates how decarbonization in the building sector can be achieved on a large scale.
Research project (§ 26 & § 27)
Duration : 2022-07-01 - 2029-06-30

In recent years, molecular informatics has transformed from a niche discipline into a driving force of the research and development of functional small molecules such as drugs and agrochemicals. Advanced algorithms as well as powerful computer hardware are now opening unprecedented opportunities for the targeted design of safe and efficacious small molecules. However, the full potential of computational methods in the biosciences is by far not exploited yet. One of the main reasons for this situation is the fact that the most powerful technologies in molecular informatics, machine learning and simulations in particular, depend on the availability of substantial amounts of high-quality data for development and validation. Despite recently launched initiatives to boost collaborative research and learning, the vast majority of high-quality chemical, biological and structural data remain behind corporate firewalls, inaccessible for research by experts in academia. This initiative for the Christian Doppler Laboratory for Molecular Informatics in the Biosciences seeks to push the frontiers of machine learning and molecular dynamics simulations technologies for the prediction of small-molecule bioactivity by supporting three expert academic research groups of the University of Vienna and the University of Natural Resources and Life Sciences (BOKU) with big data on the chemical and biological properties of small molecules, and with significant capacities for experimental testing and method validation. The unique synergy that will be generated by this consortium stems from two important factors: First, the two industry partners of this consortium have strong interest in cheminformatics but their business areas are non-competing. Second, and from a scientific point highly important, these industry partners focus on distinct chemical spaces, opening a unique opportunity for academics to boost the capacity and applicability of in silico methods with uniquely diverse, high-quality data.
Research project (§ 26 & § 27)
Duration : 2024-05-01 - 2031-04-30

Eine der dringendsten Herausforderungen unserer Zeit stellt die sogenannte Grüne Wende dar, die in eine klimaneutrale Zukunft führen soll. Hierbei kann die nachhaltige und ressourceneffiziente Nutzung von Werkstoffen einen wesentlichen Beitrag leisten und zu einer der Grundvoraussetzungen auf dem Weg in Richtung einer modernen und wettbewerbsfähigen Wirtschaft werden. In der einschlägigen Literatur wird als die häufigste Ursache für das Versagen von technischen Bauteilen Materialermüdung genannt. Für die Werkstoffauswahl und Bauteilauslegung bedeutet dies, dass bei umfangreicher Kenntnis der Ermüdungseigenschaften, energieeffiziente und langlebige Lösungen – im Idealfall Leichtbaukonstruktionen mit sehr langen Lebensdauern – konzipiert werden können. Defekte in Bauteilen können niemals vollständig vermieden werden und sowohl inhärent (wie z.B. Poren, Lunker, nichtmetallische Einschlüsse oder Materialinhomogenitäten) als auch fertigungs- oder anwendungsbedingt (Kratzer, Oberflächenrauheit, Korrosionslöcher, etc.) sein. Der Ansatz der Defekttoleranz basiert auf der Annahme, dass sich diese Defekte ähnlich wie Risse verhalten. Will man Bauteile für eine maximale Betriebsdauer auszulegen, so muss nach diesem Konzept das Wachstum von Rissen verhindert werden. Mittels bruchmechanischer Konzepte können kritische Spannungen, die bei Vorhandensein von Defekten bekannter Form und Größe zum Versagen führen, ermittelt werden. Dabei ist jedoch zu berücksichtigen, dass sich der vorherrschende Versagensmechanismus mit fortschreitender Beanspruchungsdauer ändern kann. So können Ermüdungsrisse bei sehr hohen Belastungszyklen anstatt an der Oberfläche eines Werkstoffes im Innern einleiten. Des Weiteren können Umgebungseinflüsse (Korrosionsermüdung) eine relevante Rolle spielen. Im Rahmen des CD-Labors sollen die Ermüdungseigenschaften von Stählen bei hohen und sehr hohen Belastungszyklen systematisch untersucht werden. Ziel ist die Identifikation der zugrundeliegenden Bruchmechanismen und der für eine sichere Vorhersage der zyklischen Belastbarkeit relevanten Parameter. Dabei ermöglicht die Anwendung innovativer Prüfmethoden, wie der am Institut für Physik und Materialwissenschaft der Universität für Bodenkultur Wien entwickelten Hochpräzisions-Ultraschallermüdungsanlagen, zeitnah und energieeffizient Werkstoffdaten in statistisch aussagekräftigem Umfang zu ermitteln. Auf Basis bruchmechanischer Konzepte wird in Übereinstimmung mit den experimentell ermittelten Daten ein Vorhersagemodell zur Berechnung der Dauerfestigkeit erstellt. Zusätzlich soll unter Anwendung von künstlicher Intelligenz (Machine Learning) die Optimierung der zyklischen Festigkeit ermöglicht werden. Die Ergebnisse sollen dem Unternehmenspartner zugutekommen, um wettbewerbsfähige, ressourcen- und kosteneffiziente Stahlbandsysteme zu entwickeln. Darüber hinaus soll die Expertise des Laborleiters und seines Teams an der BOKU bezüglich Defekttoleranz und Ermüdung im Bereich sehr hoher Belastungszyklen ausgebaut werden.

Supervised Theses and Dissertations