Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2016-10-01 - 2021-09-30

Archaeen sind eine der ältesten Lebensformen die auf der Erde existieren. Diese einzelligen Organismen leben oft in extremen Biotopen. Viele Vertreter der Archaeen besitzen die Fähigkeit bei sehr hohen Temperaturen (d.h. über 80 °C), sehr niedrigen oder hohen pH-Werten, hohen Salzkonzentrationen oder hohen Drücken zu leben. Da bei vielen Archaeen die Zellhülle nur aus einer sehr dünnen Fettschicht (Lipidmembran), die von einer kristallinen Proteinschicht umhüllt wird, besteht, stellt sich die Frage wie die Natur diese hohe Widerstandsfähigkeit gegenüber extremen Umweltbedingungen bewerkstelligt. Das Projekt „Herstellung und Charakterisierung von künstlichen archaealen Zellhüllen und deren Bedeutung als Modellmembran“ beschäftigt sich mit der Isolierung der biologischen Bausteinen (Lipide und Proteine) und dem Nachbau künstlicher Zellhüllen daraus. Es soll die Frage geklärt werden wie die Selbstorganisation der Etherlipide und der Oberflächenproteine im Detail abläuft. Zudem geht das Projekt der Frage nach welche Eigenschaften der Biomoleküle selbst und deren Verankerung untereinander zu den makroskopischen Zellhüllen mit erstaunlicher Widerstandsfähigkeit gegenüber extremen Biotopbedingungen führen. Zu diesem Zweck werden erstmals ausgewählte Stämme von Archaeen im Bioreaktor gezüchtet und daraus die Grundbausteine, das sind Oberflächenproteine und Fette (sogenannte Etherlipide), isoliert. Zusätzlich können die Oberflächenproteine auch genetisch hergestellt und verändert werden. So können Ankergruppen in das Protein eingefügt werden um dann spezifisch an die Etherlipide binden zu können. Dies ist ein neuer Ansatz den noch keine Forschergruppe zuvor versucht hat. Durch Anwendung des Bauprinzips, das in der Natur zu beobachten ist, werden Schicht für Schicht die Zellhüllstruktur von Archaeen nachgebaut. Dabei wird jeder Schritt mittels modernsten mikroskopischen und Oberflächen-sensitiven Techniken verfolgt und analysiert werden. Es kommen dabei neben hochauflösender Licht- und Fluoreszenzmikroskopie auch ein Elektronen- und ein Rasterkraftmikroskop als bildgebende Methoden zum Einsatz. Als wichtigste Oberflächen-sensitive Methoden seien die Oberflächenplasmonenresonanz Spektroskopie und die Schwingquarzmikrowaage mit Dissipationsmessung genannt. Diese Methoden dienen zur Bestimmung der Morphologie, Schichtausbildung, Dicke (im Nanometerbereich) und Beschaffenheit der Schichten. Aus den Ergebnissen dieses Projektes können wertvolle Erkenntnisse bezüglich der Isolierung und vor allem der Selbstorganisation von Zellwandbausteinen gewonnen werden. Aus diesem Wissen heraus können Oberflächenbeschichtungen mit sehr spezifischen Eigenschaften (z.B. antihaftend oder selbst-reinigend) hergestellt werden. Als weitere Einsatzgebiete sind biomimetische Membransysteme zu nennen, mit denen man die Zellwände der Archaeen studieren und modellieren kann. Letztere haben aber auch ein großes Potential um als Modellsysteme zu dienen, in denen man Membran-aktive Peptide und Membranproteine einbauen und systematisch untersuchen kann. Damit könnte es auch möglich sein hoch sensitive Diagnose- und Sensorsysteme zu entwickeln.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-08-26 - 2020-08-25

In diesem Projekt werden wir Kompositfilme entwickeln. Die Kunststoff-Dünnschichte beinhalten Nanopartikeln, so genannte Kvantenpunkte, die das blaue Licht eines LED ins grüne und rote Licht für ein Fernseher umwandeln kann. Wir werden die Herstellung diese Dünnfilme aus Perovskit-Kvantenpunkte untersuchen. Wir werden die Lebensdauer der Filme unter verschiedene Bedingungen testen, die für weitere Produktentwicklung wichtig sind. Am Ende des Projektes haben wir Methoden für Prototypenherstellung entwickelt und mehrere Prototypen getestet haben. Eine Datenbank wird kreiert, die die weitere Entwicklung der Perovskit-Komposit-Technologie ermöglicht.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-01-01 - 2021-12-31

Kohlenstoffröhren (engl. carbon nanotubes (CNTs)) sind zylinderförmige Nanostrukturen, die rein aus Kohlenstoffatomen aufgebaut sind. Auf Grund ihrer herausragenden mechanischen und elektrischen Eigenschaften, sowie thermischen Leitfähigkeit, werden CNTs bereits als Zusätze in neuen Werkstoffen eingesetzt. CNTs wurden in letzter Zeit aber auch für Anwendungen in der Medizin näher betrachtet, da sie auf Grund ihres geringen Durchmessers Zellen und Gewebe durchdringen können. Nachdem CNTs chemisch inert sind und sich z.B. in Wasser nicht lösen, muss ihre Oberfläche chemisch oder durch Binden von Biomolekülen angepasst werden, um so mit weiteren Molekülen beladen zu werden oder mit ihrer Umgebung in Wechselwirkung treten zu können. Dazu werden bevorzugt Proteine verwendet, da diese meistens gut biokompatibel sind und funktionelle Gruppen zum weiteren Binden anbieten. Aber, die Proteine - und somit deren funktionelle Gruppen - sind auf der CNT-Oberfläche meist nur unregelmäßig und auch nicht dicht gebunden. Eine Alternative zur Funktionalisierung von CNTs mit – zudem geschlossenen und hoch geordneten - Proteinschichten bieten S-Schichtproteine (engl. surface layer - Oberflächenschicht), die bereits seit langem zum Modifizieren von Oberflächen in der Nanobiotechnologie eingesetzt werden. S-Schichtproteine umschließen bei vielen Bakterienstämmen und bei allen Archaeen die Zellen vollständig und können als eine der häufigsten Biopolymere der Erde angesehen werden. S-Schichten zeigen Gitterparameter im Nanometerbereich, wobei sich auf Grund ihrer Struktur chemisch funktionelle Gruppen und genetisch eingebrachte funktionelle Domänen an streng definierten Positionen und in gleicher Orientierung wiederholen. Eine wesentliche Eigenschaft von S-Schichtproteinen liegt aber in ihrer Fähigkeit, von selbst wieder zweidimensionale Gitter in Lösung und an Grenzflächen, wie z.B. an festen Trägern, auszubilden. Das Projektziel liegt in der Erforschung der Rekristallisation von S-Schichtproteinen auf Kohlenstoffröhren und in der Anwendung der Erkenntnisse zur Herstellung neuartiger Materialien, wie z.B. für die Biosensorik. Der Schlüssel dazu liegt in den Eigenschaften der S-Schichtproteine selbst, die eine hochspezifische Funktionalisierung der CNT Oberfläche erlauben. Im weiteren sollen neuartige Hybridstrukturen, wie z.B. Container zum Transport von Wirkstoffen, auf der Grundlage der Biomineralisation an S-Schichten entwickelt werden. Weiters sollen metallische Nanopartikel in den Poren der S-Schicht, also direkt auf dem Kohlenstoffgitter, abgelagert und somit die elektronischen Eigenschaften der „ein-dimensionalen“ Kohlenstoffröhren direkt beeinflusst werden. Diese Beispiele eines Bausatzes aus S-Schicht und Kohlenstoffröhren zeigen, dass dieses Projektes zu einer neuen Technologie zur biologischen Funktionalisierung von Kohlenstoffröhren führen kann.

Betreute Hochschulschriften