Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2016-12-01 - 2020-05-31

Forests are increasingly exposed to climate-driven biotic and abiotic disturbances. Climate change could thus jeopardize forests' capacity to deliver ecosystem services. There is therefore an urgent need to adapt forest management so as to promote and improve forest resilience at different spatial and temporal scales. Mixed forests are considered as one of the main options for adapting to and reducing risks of climate change. Higher tree species diversity is expected to provide higher productivity, higher temporal stability, higher resistance and resilience to disturbances and a more diverse portfolio of ecosystem services. However, knowledge about how to design and manage mixed forests to achieve these potential benefits is still lacking. REFORM aims at identifying the most optimal composition and management of mixed forests in order to reduce natural and socio-economic impacts of climate change. REFORM is based on data from observational, experimental and modelling platforms provided by twelve partners from ten countries covering different bioclimatic regions in Europe. It will investigate mixed forest features, like species composition, mixing patterns, stand age and density, that best explain resistance and resilience to biotic and abiotic disturbances. It will define the management options to achieve and maintain these optimal mixed forest features. The impact of these management alternatives on the provision of ecosystem services will be also evaluated. REFORM will provide forest managers with practical tools for increasing resilience of mixed forests using a scenario analysis at different scales, including local-adapted silviculture guidelines, forest models, and transnational training forest networks. The project will make recommendations to forest policy makers for the promotion of resilient mixed forestry.
Research project (§ 26 & § 27)
Duration : 2021-02-01 - 2024-01-31

The SOMMIT project will evaluate trade-offs and synergies between soil C sequestration, nitrous oxide, methane and nitrate losses as affected by soil management options aimed at increasing soil C storage. The integrated and interdisciplinary approach will address the main pedo-climatic conditions and farming systems in Europe, through 1) synthesis and meta-analysis of available literature and data; 2) targeted, novel measurements on key long-term experiments; and 3) simulation of long-term agro-ecological system responses to contrasting management options. Moreover, obtained data will be synthesized through a fuzzy-expert system which will allow for 4) evidence-based identification of optimal strategies for mitigation of trade-offs, and 5) effective stakeholders’ involvement.
Research project (§ 26 & § 27)
Duration : 2021-02-01 - 2025-01-31

The VUCL will test the latest measurement-based emissions monitoring methods to address a pressing scientific research question with practical and political implications – Can Vienna’s greenhouse gas (GHG) emissions be adequately measured? The need for climate action in cities is critical. Systems that quantify local GHG emissions to evaluate mitigation measures are thus growing in importance and will undergo increasing levels of scrutiny. Measurement-based systems offer enormous potential; however, there is still substantial research required before they can be established within routine monitoring systems which currently rely on emission inventories. The VUCL thus proposes a number of cutting-edge scientific investigations, involving tall-tower eddy covariance measurements of net carbon dioxide (CO2) and methane (CH4) fluxes, CO2 isotope and isoflux measurements, as well as test campaigns with a differential column sensor network to measure upwind-downwind gradients in CO2 and CH4 mixing ratios. The VUCL brings together the University of Natural Resources and Life Sciences Vienna (BOKU), the Technical University Munich (TUM), the Environment Agency Austria (EAA) and A1 Telekom Austria AG (A1) and aims to: advance science in the field of measurement-based GHG emissions estimates; showcase the latest measurement-based methods to city administrators; and lay the foundations for an adequate local monitoring system for quantifying total and sector specific emissions reductions.

Supervised Theses and Dissertations