Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-03-01 - 2023-02-28

Neben den bekannten und gefürchteten Infektionskrankheiten Malaria, Tuberkulose und AIDS gibt es besonders in wirtschaftlich ärmeren Ländern weniger bekannte und trotzdem tödliche Erreger. Bei dem vorliegenden Projekt geht es um den Einzeller Entamoeba histolytica. Geschätzte 50.000 Menschen sterben jedes Jahr an Infektionen mit dieser Amöbe, die besonders den Darm und die Leber des Menschen angreift. Unser Projekt befaßt sich hauptsächlich mit einem komplizierten Oberflächenmolekül, von dem jede einzelne invasive Amöbe etwa 80 Millionen Kopien besitzt. Das Molekül trägt den komplexen Namen Lipopeptidophosphoglykan (LPPG), und zudem weitere Namen. Es besitzt einen Kern aus einem Eiweißmolekül, das mit einer aufwändigen Struktur in der Zellmembran verankert ist. In dem bis heute noch nicht identifizierten Kerneiweiß kommt die Aminosäure Serin häufig vor, an diesen Serinen hängen Phosphatgruppen, die unverzweigte Kohlehydratketten tragen. Wir waren ursprünglich auf das LPPG gestoßen, als wir monoklonale Antikörper aus Mäusen erzeugten, die gegen Oberflächenbestandteile der Amöbe geimpft waren. Ein solcher Antikörper, von uns EH5 genannt, bindet an das LPPG und kann mit Amöben infizierte Mäuse vor Leberabszessen schützen. Später konnten wir zeigen, dass der Antikörper eine bestimmte Aminosäuresequenz im Kerneiweiß von LPPG erkennt, und in den Daten des späteren Genomprojekts entdeckten wir ein Gen, das das Kerneiweiß von LPPG kodieren könnte. Ein Ziel unseres Projekts ist der Nachweis, ob genau dieses Genprodukt oder ein anderes wirklich den Kern des LPPG bildet. Ein weiterer Teil des Projekts soll untersuchen, wie die Seitenketten des LPPG gebildet werden. Sie bestehen aus Glukose, dem häufigsten Zuckermolekül, das jedoch in einer ungewöhnlichen Weise, wie bei der Oberfläche von Kariesbakterien, verbunden ist. Eine weitere Frage ist, wie die Amöbe die Basis dieser Ketten herstellt. Bei der Struktur des LPPG Moleküls fällt auch auf, dass Galaktose an verschiedenen Stellen eingebaut ist. Galaktose unterscheidet sich von Glukose nur dadurch, dass eine einzige Gruppe in eine andere Richtung weist. Das Enzym GalE mit dem Namen UDP-Glukose 4´-Epimerase kann UDP-Glukose in UDP-Galaktose umwandeln und damit die aktivierte Form von Galaktose erzeugen. Wir planen, das Gen für GalE in den Amöben abzuschalten, um zu untersuchen, welche Auswirkungen das auf das LPPG und generell auf die Amöben hat. Weiters suchen wir nach den Transferasen, die speziell den Zucker Galaktose einbauen können. Bei der Suche nach Enzymen für die Kohlehydratbiosynthese haben wir bereits alle Datenbanken durchforstet und eine Ausgangsliste erstellt. Eine tiefere Analyse zusammen mit einem Kollegen in Frankreich ist geplant. Insgesamt erwarten wir, dass wir in der Wiener Zusammenarbeit von der molekularen Parasitologie an der Medizinischen Universität mit der Kohlehydratbiochemie an der Universität für Bodenkultur einen signifikanten Beitrag zum Verständnis der Oberfläche von pathogenen Entamoeben liefern wird.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-07-01 - 2022-06-30

Verbesserung der Wertschöpfungskette von Holz zu Textilien durch neue Technologien auf der Grundlage ionischer Flüssigkeiten und Enzyme. Konkret geht es darum, nachhaltigere ionische Flüssigkeiten (IL's) zu entwickeln, die die vorhandenen Lösungsmittel in der Wertschöpfungskette ersetzen und neuartige Vorbehandlungstechnologien wie enzymgestützte Modifikation oder chemische Modifikationen zu entwickeln, die maßgeschneiderte cellulosische Fasern ermöglichen. Durch den Einsatz innovativer Materialkombinationen (z.B. Cellulose mit Keratin) werden die textilen Eigenschaften weiter verbessert. Insgesamt ermöglichen diese Entwicklungen die Verbesserung der Löslichkeit, der Farbstoffadsorption und der Pilling-Resistenz von Regeneratfasern/Filamenten.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2019-04-01 - 2021-03-31

Das Projekt „Erneuerbare turbulente Flusschromatographie für Exposomics“ wird von Dr. David J. Cocovi-Solberg an der BOKU Wien unter der Betreuung von Assoz. Prof. Dr. Stephan Hann durchgeführt. Ziel des Projekts ist die Entwickelung von neuen Systemen zur Realisierung von automatisierten Analysen im Bereich von Studien zum „Exposom“. Während in der klassischen Umweltanalytik die Ermittlung der Konzentration einzelner Substanzen in verschiedenen Umweltkompartimenten im Vordergrund steht, beschäftigt sich die Exposom-Analytik mit der Untersuchung der möglichen toxischen oder gesundheitsschädigenden Auswirkung aller auf den Menschen einwirkenden Umwelteinflüsse und Substanzen. Exposom-Studien stellen eine große Herausforderung dar und sind sehr komplex, da viele verschiedene Stoffe mit teilweise sehr geringen Konzentrationen („part per billion-levels“) in einer Vielzahl von Proben untersucht werden müssen. Die Massenspektrometrie ist die Methode der Wahl für solche Studien, wobei ein Nachteil bei der geringen Robustheit dieser Systeme bezüglich Proben mit hohem Matrixgehalten besteht. Als Folge müssen die Proben in mehreren Aufarbeitungsschritten vorbereitet werden. Dies ist mit einem hohen Zeitaufwand und einem hohen Verbrauch von Chemikalien verbunden, muss aber zur Abtrennung von Probenbestanteilen durchgeführt werden, um richtige Ergebnissen zu erzielen und die hohe Performance und lange Lebensdauer der Geräte zu gewährleisten. Zur Verbesserung dieser Situation werden im Projekt an der BOKU unter der Nutzung von speziellen Ventilen, Pumpen und 3D-gedruckten Komponenten neue Systeme entwickelt, welche eine vollautomatisierte Probenvorbereitung ermöglichen, bei der störende Probenbestandteile abgetrennt und eine empfindliche Bestimmung der Zielanalyten ermöglicht wird. Das Herz dieser Systeme besteht aus der sogenannten turbulenten Flusschromatographie (TFC), einer schon länger bekannten Methode, welche auf den Vorteilen eines turbulenten Flussregimes im Zusammenhang mit partikulären Festphasen besteht, aber nie im Kontext Exposom angewandt worden ist. Mit Hilfe der heutigen technischen Möglichkeiten (IT-Lösungen, 3D-Druck, neue Materialien) wird im vorliegenden Projekt das Konzept TFC neu entwickelt und implementiert werden. Das neue System wird komplexe Probenvorbereitungsschritte in automatisierter Form, ohne dass manuelle Eingriffe notwendig sind, durchführen und die genaue Analyse einer Vielzahl von Substanzen ermöglichen.

Betreute Hochschulschriften