Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2021-09-01 - 2024-08-31

Theoretischer Rahmen Einer der ersten spezifischen Abwehrmechanismen gegen eindringende Pathogene und Selbstantigene ist das Komplementsystem, das durch Immunglobuline (Igs) aktiviert wird. Igs binden spezifisch an das Antigen des Pathogens und ermöglichen dadurch das Andocken des C1q-Komplement-Initiationskomplexes. Zwei Faktoren, die die Komplementaktivierung beeinflussen, wurden bisher noch nicht im Detail untersucht. Erstens das Format des Antigens, beschrieben durch die chemische Natur, die molekulare Größe und die Art der Präsentation (als lösliche Substanz oder eingebettet in Vesikel zur Nachahmung der Zelloberfläche). Zweitens, der große Unterschied in der Komplementaktivierung, der sich aus dem Grad der Oligomerisierung der IgMs ergibt. Zielsetzung Das übergeordnete Ziel des pent/hexIgM-Projekts ist die Aufklärung der Aktivierungsstellen von C1q und der IgM-Fc nach Bindung von pentameren und hexameren IgMs an unterschiedliche Antigenformate. Herangehensweise/Methoden Wir werden rekombinante IgMs und das C1q-Protein in Säugetierzellen herstellen und Mutanten davon durch Hefeoberflächendisplay generieren. Anschließend werden wir die biologischen Aktivitäten der generierten Proteine in vitro durch immunchemische und biophysikalische Analysen sowie durch Funktionstests bestätigen. Vor allem aber werden wir den Einfluss des Antigenformats und des Oligomerisierungsgrades der IgMs (pentamere versus hexamere IgMs) auf die Aktivierung des Komplementsystems aufklären. Grad der Originalität Obwohl IgMs in Kombination mit Komplementproteinen eine wichtige Funktion im menschlichen Körper haben, werden diese Proteine in Therapie und Diagnostik noch nicht breit eingesetzt. Die Ergebnisse des pent/hexIgM-Projekts werden zum Verständnis der komplexen Mechanismen beitragen, die der Aktivierung der Komplementkaskade zugrunde liegen, und Daten liefern, die für die Entwicklung neuer Diagnostik und effizienter Behandlungsmethoden für verschiedene infektiöse, entzündliche, chronische und Krebserkrankungen von besonderer Bedeutung sind.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2024-04-01 - 2028-03-31

Mikrobielle Zellfabriken wie spezialisierte Bakterien, Hefen und Pilze werden zur Herstellung relevanter Verbindungen und technischer Biomoleküle wie Rohstoffe, Feinchemikalien, Lebensmittelzusätze und Biopharmazeutika eingesetzt. Maßgeschneiderte robuste Mikroorganismen, die neuartige biologische Verhaltensweisen zeigen, produzieren diese Produkte auf nicht-chemische Weise und nutzen dabei die Werkzeuge der Natur, im Allgemeinen unter Verwendung erneuerbarer Substrate wie Glukose oder industrieller Nebenströme. C1-Rohstoffe wie Methan, Methanol, Formiat, CO2 und CO haben wichtige Vorteile gegenüber herkömmlichen organischen Kohlenstoffquellen wie Glukose. Sie sind günstig, können auf erneuerbare Weise aus CO2 gewonnen werden, konkurrieren nicht mit Lebens- oder Futtermitteln und erfordern keine aufwändige Vorverarbeitung aus komplexen landwirtschaftlichen Nebenströmen. Der Einsatz von C1-Substraten in mikrobiellen Zellfabriken würde eine von Natur aus nachhaltige Kohlenstoffkreislaufwirtschaft gewährleisten. Aufgrund der relativen Neuheit dieses Ansatzes sind jedoch weitere Arbeiten erforderlich, um abiotische C1-Substrate mit biologischen Rohstoffen konkurrieren zu lassen. Das CiTrY-Projekt wird zu diesem Ziel beitragen, indem es Transportmechanismen der C1-Substrate über Plasma- und Organellenmembranen der mikrobiellen Zellfabriken untersucht und verbessert. Bisher wenig beforschte Proteine ​​und Proteinfamilien werden untersucht, moderne Protein-Engineering-Strategien und Hochdurchsatz-Screening durchgeführt und ein neuartiger Ansatz zum Organellenmembran-Targeting entwickelt.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2024-02-15 - 2026-02-14

Die Entwicklung eines Verfahrens zur Herstellung von rekombinantem Influenza-Neuraminidase (rNA)-Antigen im Baculovirus-System und insbesondere die nachgeschaltete Verarbeitung/Reinigung werden in Zusammenarbeit zwischen der Icahn School of Medicine am Mount Sinai und der Universität für natürliche Ressourcen und Biowissenschaften durchgeführt, um ein auf Affinitätsreinigung basierendes nachgeschaltetes Verfahren zur Herstellung von mit seinen Markierungen versehener rNA zu optimieren, das im CMO Expression Systems erfolgreich umgesetzt werden kann, um genügend rNA für eine klinische Phase-I-Studie des Collaborative Influenza Vaccine Innovation Centers (CIVICs) zu produzieren. Darüber hinaus soll ein ertragreicher tagloser Reinigungsprozess entwickelt werden, der es uns ermöglichen würde, ausreichende Proteinausbeuten für die klinische Entwicklung nach der Phase I zu erzielen. Diese Arbeiten werden uns in die Lage versetzen, rNA-Impfstoffe in klinischen Versuchen zu testen, und könnten auch einen kommerziellen Weg für die Entwicklung von Impfstoffen auf der Basis von rNA-Proteinen im Allgemeinen eröffnen.

Betreute Hochschulschriften