Publication from Kai Dünser (Kleine-Vehn Lab)

"Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing"

Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein–protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.

» https://doi.org/10.1016/j.cub.2019.07.039

» Kleine-Vehn Lab

Publication from Adam Lab

"Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains"

​​​​​​Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a D-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.

» https://doi.org/10.3389/fpls.2019.01072

» Adam Lab

Publication with Contribution from Adam Lab

"Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo"

Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.

» https://doi.org/10.3390/toxins11080481

» Adam Lab


Congratulations to Anna Atanasoff-Kardjalieff who successfully defended her Master Thesis on Fusarium heterochromatin and epigenetics.

Very well done and welcome to our group as PhD student!

» Strauss Lab

Publication from Jennifer Schoberer & Strasser Lab

"A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD"

The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.

» https://doi.org/10.1038/s41467-019-11686-9

» Jennifer Schoberer

» Strasser Lab

Publication from Strauss/Studt Lab

"Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism"

Fungi produce a plethora of secondary metabolites (SMs) involved in cellular protection, defense, and signaling. Like other metabolic processes, transcription of SM biosynthesis genes is tightly regulated to prevent an unnecessary use of resources. Genes involved in SM biosynthesis are usually physically linked, arranged in secondary metabolite gene clusters (SMGCs). Research over the last decades has shown that chromatin structure and posttranslational modifications (PTMs) of histones represent important layers of SMGC regulation. For instance, trimethylation of histone H3 lysine 4 (H3K4me3) is a PTM typically associated with promoter regions of actively transcribed genes. Previously, we have shown that the H3K4me3-specific, JmjC domain-containing histone demethylase KdmB functions not only in repression but also in activation of secondary metabolism in Aspergillus nidulans, suggesting that KdmB has additional functions apart from histone demethylation. In this study, we identified demethylase-independent functions of KdmB in transcriptional regulation of SM gene clusters. Furthermore, we show that this activating and demethylase-independent role of the H3K4 demethylase is also conserved in the phytopathogenic fungus Fusarium graminearum. Lack of FgKdm5 resulted in significant downregulation of five of seven analyzed SMs, whereby only one SMGC depends on a functional JmjC-domain. In A. nidulans strains deficient in H3K4 methylation, i.e., cclA∆, largely phenocopied kdmB∆, while this is not the case for most of the SMs analyzed in Fusarium spp. Notably, KdmB could not rescue the demethylase function in ∆fgkdm5 but restored all demethylase-independent phenotypes.

» https://doi.org/10.3389/fmicb.2019.01759

» Strauss Lab

» Lena Studt

Publication from Kleine-Vehn Lab

"Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots"

Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other’s negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.

» https://doi.org/10.1038/s41467-019-11483-4

» BOKU Top Story

» Kleine-Vehn Lab

Publication from Strasser Lab

"Distinct Fc alpha receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies"

Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fc alpha receptor (FcαRI) which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1) and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating non-human N-glycan structures. By co-infiltrating IgA with the respective glycan modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles do not influence antigen binding or the overall structure and integrity of the IgA antibodies, but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mix of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity, but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.

» http://www.jbc.org/content/early/2019/07/30/jbc.RA119.009954

» Strasser Lab

Publication from Kleine-Vehn Lab

"PIN-FORMED and PIN-LIKES auxin transport facilitators"

The phytohormone auxin influences virtually all aspects of plant growth and development. Auxin transport across membranes is facilitated by, among other proteins, members of the PIN-FORMED (PIN) and the structurally similar PIN-LIKES (PILS) families, which together govern directional cell-to-cell transport and intracellular accumulation of auxin. Canonical PIN proteins, which exhibit a polar localization in the plasma membrane, determine many patterning and directional growth responses. Conversely, the less-studied non-canonical PINs and PILS proteins, which mostly localize to the endoplasmic reticulum, attenuate cellular auxin responses. Here, and in the accompanying poster, we provide a brief summary of current knowledge of the structure, evolution, function and regulation of these auxin transport facilitators.

» https://dev.biologists.org/content/146/15/dev168088

» Kleine-Vehn Lab

Publication from Strasser & Mach Lab

"Genome and transcriptome characterization of the glycoengineered Nicotiana benthamiana line ΔXT/FT"

Based on an existing draft assembly of the N. benthamiana genome we predict 50,516 protein –encoding genes (62,216 transcripts) supported by expression data derived from 2.35 billion mRNA-seq reads. Using singlecopy core genes we show high completeness of the predicted gene set. We functionally annotate more than two thirds of the gene set through sequence homology to genes from other Nicotiana species. We demonstrate that the expression profiles from leaf tissue of ΔXT/FT and its wild type progenitor only show minimal differences. We identify the transgene insertion sites in ΔXT/FT and show that one of the transgenes was inserted inside another predicted gene that most likely lost its function upon insertion. Based on publicly available mRNA-seq data, we confirm that the N. benthamiana accessions used by different research institutions most likely derive from a single source.

» https://doi.org/10.1186/s12864-019-5960-2

» Strasser Lab
» Mach Lab

Preprint from Kleine-Vehn

"NET4 modulates the compactness of vacuoles in Arabidopsis thaliana"

The dimension of the plants largest organelle – the vacuole, plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton but the mechanistic connection between them remains largely elusive. Recently, the NETWORKED (NET) family of membrane-associated, actin-binding proteins has been identified and represent potential candidates to impact on vacuolar morphology. Here, we show that NET4A localizes to highly constricted regions in the vacuolar membrane and contributes to the compactness of the vacuole. Using genetic interference, we found that deregulation of NET4 abundance impacts on vacuole morphogenesis and overexpression leads to more compact vacuoles. We moreover show that the NET4A-induced changes in vacuolar shape correlates with reduced cellular and organ growth in Arabidopsis thaliana. Our results demonstrate that NET4 modulates the compactness of vacuoles and reveal higher complexity in the regulation of actin-reliant vacuolar morphology.

» https://doi.org/10.1101/714774

» Kleine-Vehn Lab

Kinderuni am DAGZ

Am Montag und Dienstag (17./18.06.2019) waren je eine Klasse der Volksschule Familienschule Leopoldstadt bei uns zu Gast, jeweils für den ganzen Vormittag.
Die Kinder waren zwischen 8 und 10 Jahre alt (3. und 4. Klasse), es waren einmal 20 und einmal 21 Kinder, und wir hatten ein Programm mit Experimenten zum Thema Pflanzen und Pilze, und generell zur Arbeit in einem Biologie-Labor.

Die Mitwirkenden waren: Jeanette Moulinier-Anzola, Barbara Korbei, Elena Feraru, Sabine Strauss-Goller, Max Schwihla, Kai Dünser und Doris Lucyshyn.

» Korbei Lab
» Lucyshyn Lab
» Kleine-Vehn Lab
» Strauss Lab

Wissenschaftskommunikation "extended" - Wie beeinflussen Bakterien die Genexpression in assoziierten Pilzen?

Die eLIFE Publikation über Bakterien-Pilz Interaktion der Arbeitsgruppe Strauss, wurde als Highlight in der Märzausgabe der Zeitschrift Biospektrum vorgestellt.

» https://doi.org/10.1007/s12268-019-1048-4 (Biospektrum)

» https://www.ncbi.nlm.nih.gov/pubmed/30311911 (eLIFE)

» Strauss Lab

Preprint from Kleine-Vehn Lab

"Brassinosteroid signaling controls PILS-dependent nuclear auxin input in Arabidopsis thaliana"

Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that brassinosteroid signaling controls nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PIN-LIKES (PILS) putative intracellular auxin transport facilitator. Here we report that the imp1 mutant is defective in the brassinosteroid-receptor BRI1. BR signaling transcriptionally and posttranslationally represses accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin. We demonstrate that this alternative phytohormonal crosstalk mechanism integrates BR signaling into auxin-dependent organ growth rates and likely has widespread importance for plant development.

» https://doi.org/10.1101/646489

» Kleine-Vehn Lab


Qiang Chen
The Biodesign Institute and School of Life Sciences

"Improving effector functions of antibodies against flavi-and alphaviruses"

Host: Herta Steinkellner

Muthgasse18, 1190 Vienna
Seminar-room DAGZ (4thfloor)
June 6th2019, 11:30 h

Publication from Strauss Lab

"Fusaoctaxin A, an Example of a Two-Step Mechanism for Non-Ribosomal Peptide Assembly and Maturation in Fungi"

Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.

» https://doi.org/10.3390/toxins11050277

» Strauss Lab

Publication with Contribution from Adam Lab

"Simple validated method for simultaneous determination of deoxynivalenol, nivalenol, and their 3-β-D-glucosides in baby formula and Korean rice wine via HPLC-UV with immunoaffinity cleanup"

A simple and reliable method for the simultaneous determination of major type B trichothecene mycotoxins, deoxynivalenol (DON) and nivalenol (NIV), along with their 3-β-d-glucosides (DON-3-glucoside (DON3G) and NIV-3-glucoside (NIV3G)) in baby formula and Korean rice wine was validated in the present study. The method was based on immunoaffinity cleanup followed by analysis using an HPLC-UV technique. The method was validated in-house for two matrices as follows: linearity (R2 > 0.99) was established in the range of 20-1000 μg kg-1; accuracy (expressed as recovery) ranged from 78.7 to 106.5% for all the analytes; good intermediate precision (relative standard deviation < 12%), and adequate detection and quantitation limits (< 4.4 and < 13.3 μg kg-1, respectively) were achieved. Furthermore, the estimated measurement expanded uncertainty was determined to be 4-24%. The validated method was successfully applied to the analysis of 31 baby formulas and Korean rice wines marketed in Korea.

» DOI: 10.1080/19440049.2019.1606454

» Adam Lab

Publication from Adam Lab

"The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol"

Glucuronidation is a major phase II conjugation pathway in mammals, playing an important role in the detoxification and biotransformation of xenobiotics including mycotoxins such as deoxynivalenol (DON). Culmorin (CUL), a potentially co-occurring Fusarium metabolite, was recently found to inhibit the corresponding detoxification reaction in plants, namely DON-glucoside formation, raising the question whether CUL might affect also the mammalian counterpart. Using cell-free conditions, CUL when present equimolar (67 µM) or in fivefold excess, suppressed DON glucuronidation by human liver microsomes, reducing the formation of DON-15-glucuronide by 15 and 50%, and DON-3-glucuronide by 30 and 50%, respectively. Substantial inhibitory effects on DON glucuronidation up to 100% were found using the human recombinant uridine 5'-diphospho-glucuronosyltransferases (UGT) 2B4 and 2B7, applying a tenfold excess of CUL (100 µM). In addition, we observed the formation of a novel metabolite of CUL, CUL-11-glucuronide, identified for the first time in vitro as well as in vivo in piglet and human urine samples. Despite the observed potency of CUL to inhibit glucuronidation, no significant synergistic toxicity on cell viability was observed in combinations of CUL (0.1-100 µM) and DON (0.01-10 µM) in HT-29 and HepG2 cells, presumably reflecting the limited capacity of the tested cell lines for DON glucuronidation. However, in humans, glucuronidation is known to represent the main detoxification pathway for DON. The present results, including the identification of CUL-11-glucuronide in urine samples of piglets and humans, underline the necessity of further studies on the relevance of CUL as a potentially co-occurring modulator of DON toxicokinetics in vivo.itro glucuronidation of deoxynivalenol.

» DOI: 10.1007/s00204-019-02459-w

» Adam Lab

Publication from Mach Lab

"Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12"

Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using “click chemistry”. The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding

» https://dx.doi.org/10.1021%2Facs.bioconjchem.8b00731

» Mach Lab

Publication from Jennifer Schoberer & Strasser Lab

"Golgi localization of GnTI requires a polar amino acid residue within its transmembrane domain"

The Golgi apparatus consists of stacked cisternae filled with enzymes to facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi resident glycosyltransferases and glycosidases in distinct Golgi compartments are unclear. The single-pass transmembrane domain of N-acetylglucosaminyltransferase I (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues from the GnTI transmembrane domain for Golgi localization and N-glycan processing. Conserved sequence motifs within the transmembrane domain were replaced with those from the well-known trans-Golgi enzyme alpha2,6-sialyltransferase (ST) and site-directed mutagenesis was used to exchange individual amino acid residues. Subcellular localization of fluorescent fusion proteins and N-glycan profiling revealed that a conserved glutamine residue in the GnTI transmembrane domain is essential for its cis/medial-Golgi localization. Replacing the crucial glutamine residue with other amino acids results in mislocalization to the vacuole and impaired N-glycan processing in vivo. Our results suggest that sequence-specific features in the transmembrane domain of GnTI are required for interaction with a Golgi-resident adaptor protein or specific lipid environment that likely promotes COPI-mediated retrograde transport to maintain the steady-state distribution of GnTI in the cis/medial-Golgi.

» https://doi.org/10.1104/pp.19.00310

» https://twitter.com/PlantPhys/status/1116737558472482820

» Strasser Lab

DAGZ Impromptu seminar

Vivien Rolland
CSIRO, Australia

“I see the light! Cell wall engineering, pH and fluorescence”

Wednesday 24.04.2019, 09:00 am
DAGZ Seminar room, 4th floor (MUG2‐04/54)
Muthgasse 18, 1190 Wien
Hosts: Elke Barbez, Sascha Waidmann

» Kleine-Vehn Lab

BiRT Seminar Series

Prof. Dr. Gerhard H. Braus

Georg-August-University Göttingen,

Institute of Microbiology and Genetics

"Aspergillus as model for coordinated development and secondary metabolism"

Donnerstag: 04. April 2019, 09:30 

Campus Tulln / UFT – Seminarraum 14

» Strauss Lab

Publication with contribution from Hauser Lab

"UV-B exposure reduces the activity of several cell wall-dismantling enzymes and affects the expression of their biosynthetic genes in peach fruit (Prunus persica L., cv. Fairtime, melting phenotype)"


Softening processes after ripening are a major factor contributing to the perishability of fleshy fruits and, together with mechanical damage, represents the onset of physiological decay. Softening involves multiple co-ordinated events leading to modifications of the cell wall architecture. Several studies described that UV-B radiation positively affects both the nutraceutical and aesthetical qualities of fruits. However, very few studies investigated the effect of UV-B irradiation on the activity of cell wall-related enzymes. This research aimed to study how different UV-B treatments (10 min and 60 min) affect the activity of cell wall-modifying enzymes (pectin methylesterase, polygalacturonase and β-galactosidase) together with the expression of some of their isoforms up to 36 h after UV-B treatment of peach (cv. Fairtime, melting phenotype) fruits. Results revealed that UV-B radiation did not affect the soluble solid content and the titratable acidity, two important parameters influencing consumers choice and taste. On the contrary, UV-B was effective in reducing the loss of firmness 24 h after the 60 min irradiation. Generally, a lower activity of the hydrolytic enzymes compared to untreated fruits was observed, regardless of the UV-B dose. However, gene expression did not reflect the corresponding enzymatic activity. Based on these results, UV-B irradiation might be a successful tool in reducing the loss of firmness of peach fruit in post-harvest, thus improving their quality and shelf-life.

» https://doi.org/10.1039/C8PP00505B

» Hauser Lab

FWF Projekt für Jennifer Schoberer

"Untersuchung des ER-Golgi Interface mittels Arabidopsis MNS3"

Projektnummer: P 31921 Einzelprojekte 

Kuratoriumssitzung: 11.03.2019

» Strasser Lab

FWF Projekt für Georg Seifert

"Protein O-Glycosylierungskontrolle"

Projektnummer: P 32332 Einzelprojekte

Kuratoriumssitzung: 11.03.2019

» Seifert Lab

Preprint from Kleine-Vehn Lab

"Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots"

Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and revealed that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach revealed that two phytohormonal cues at opposite organ flanks counterbalance each others negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.

» https://doi.org/10.1101/572941

» Kleine-Vehn Lab

Publication from Kleine-Vehn Lab

"Extracellular matrix sensing by FERONIA and Leucine‐Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana"

Cellular elongation requires the defined coordination of intra‐ and extracellular processes, but the underlying mechanisms are largely unknown. The vacuole is the biggest plant organelle, and its dimensions play a role in defining plant cell expansion rates. Here, we show that the increase in vacuolar occupancy enables cellular elongation with relatively little enlargement of the cytosol in Arabidopsis thaliana. We demonstrate that cell wall properties are sensed and impact on the intracellular expansion of the vacuole. Using vacuolar morphology as a quantitative read‐out for intracellular growth processes, we reveal that the underlying cell wall sensing mechanism requires interaction of extracellular leucine‐rich repeat extensins (LRXs) with the receptor‐like kinase FERONIA (FER). Our data suggest that LRXs link plasma membrane‐localised FER with the cell wall, allowing this module to jointly sense and convey extracellular signals to the cell. This mechanism coordinates the onset of cell wall acidification and loosening with the increase in vacuolar size.

» https://doi.org/10.15252/embj.2018100353

» Kleine-Vehn Lab

Umwelt.Wissen Tage für Kids

Die Umwelt.Wissen Tage für Kids geben Kindern und Jugendlichen die Möglichkeit, auf spannende Art Umwelt-, Klima- und Energie-Themen  zu erforschen und Organisationen kennen zu lernen, die in diesen Themenfeldern aktiv sind. 

„Liquid handling“ oder Was tun die im Labor den ganzen Tag?
Kannst Du mit kleinen Mengen Substanz umgehen? In unserer Forschung analysieren wir Pilze, Bakterien sowie Proben aller Art. Wir verwenden oft kleine Mengen Flüssigkeit und beobachten Reaktionen. An der Station wird anhand eines Pipettierschemas der Umgang mit Pipetten geübt.
Wir verwenden Farblösungen und kreieren eine bunte Platte mit bis zu 96 Positionen. So kann ein Eindruck der wesentlichsten Arbeitsschritte in der molekularen und mikrobiologischen Forschung gewonnen werden.

Die BiMM hat mit 120 Kindern pipettieren geübt. Jetzt wissen die was wir im Labor so machen.

» http://www.umweltwissenkids.at/

» Videoclip der Umwelt.Wissen Tage

» https://www.bimm-research.at/

Publication from Kalyna Lab

"Does co-transcriptional regulation of alternative splicing mediate plant stress responses?"

Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.

» https://doi.org/10.1093/nar/gkz121

» Kalyna Lab

DAGZ Tulln Seminar

"Key findings on how different nitrogen sources affect root development in Arabidopsis thaliana"

Great insights how different forms of nitrogen nutrition influence plant root development in the yeasterday DAGZ Tulln seminar given by IST researcher Krisztina Ötvös. 

» https://www.researchgate.net/profile/Krisztina_Oetvoes

» Strauss Lab

Publication with contribution of Strauss Lab (Simone Bachleitner & Lena Studt)

"Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum"

Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusarium graminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.

» https://doi.org/10.1016/j.funbio.2018.12.009

» Strauss Lab

Publication with contribution of Adam Lab

"Metabolism of nivalenol and nivalenol-3-glucoside in rats"


  • Characterization of 7 novel nivalenol (NIV)- and NIV-3-glucoside (NIV3 G) metabolites in rats.
  • Development of LC-MS/MS based methods for analysis of NIV(3 G) metabolites in rat excrements.
  • Similar metabolization of NIV and deoxynivalenol in rats, but with different metabolite patterns.
  • NIV3 G is largely hydrolyzed in the GI tract of rats, but also extensively further metabolized.
  • The systemic exposure to NIV is roughly 30 times lower after NIV3 G consumption than after NIV dosage.

» https://doi.org/10.1016/j.toxlet.2019.02.006

» Adam Lab

Publication from Kleine-Vehn Lab

"PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana"

High temperature (HT) strongly modulates plant growth and eventually threatens yield stability. HT induces biosynthesis of the phytohormone auxin, which in turn increases cellular auxin levels and growth rates in shoots. This mechanism does not control HT-induced root growth and, hence, the role of auxin in this process is currently controversial. Here we show that the putative auxin carrier PIN-LIKES 6 (PILS6) localizes to the endoplasmic reticulum, where it gates nuclear auxin accumulation and perception. HT decreases the abundance of PILS6 proteins, consequently increasing nuclear auxin signaling and root growth. Our data dismantle current controversy, revealing an alternative subcellular mechanism in roots, which links PILS6-dependent control of cellular auxin sensitivity with HT-induced organ growth.

» https://doi.org/10.1073/pnas.1814015116

» Presseaussendung

» Kleine-Vehn Lab

Publication from Kleine-Vehn Lab

"Identification of novel inhibitors of auxin-induced Ca2+ signaling via a plant-based chemical screen"

Many signal perception mechanisms are connected to Ca2+-based second messenger signaling to modulate specific cellular responses. The well-characterized plant hormone auxin elicits a very rapid Ca2+ signal. However, the cellular targets of auxin-induced Ca2+ are largely unknown. Here, we screened a biologically annotated chemical library for inhibitors of auxin-induced Ca2+ entry in plant cell suspensions to better understand the molecular mechanism of auxin-induced Ca2+ and to explore the physiological relevance of Ca2+ in auxin signal transduction. Using this approach, we defined a set of diverse, small molecules that interfere with auxin-induced Ca2+ entry. Based on annotated biological activities of the hit molecules, we found that auxin-induced Ca2+ signaling is, among others, highly sensitive to disruption of membrane proton gradients and the mammalian Ca2+ channel inhibitor bepridil. Whereas protonophores nonselectively inhibited auxin-induced and osmotic-stress-induced Ca2+ signals, bepridil specifically inhibited auxin-induced Ca2+. We found evidence that bepridil severely alters vacuolar morphology and antagonized auxin-induced vacuolar remodeling. Further exploration of this plant-tailored collection of inhibitors will lead to a better understanding of auxin-induced Ca2+ entry and its relevance for auxin responses.

» https://doi.org/10.1104/pp.18.01393

» Kleine-Vehn Lab

Publication from Kalyna Lab

"VARIFI-Web-Based Automatic Variant Identification, Filtering and Annotation of Amplicon Sequencing Data"

Fast and affordable benchtop sequencers are becoming more important in improving personalized medical treatment. Still, distinguishing genetic variants between healthy and diseased individuals from sequencing errors remains a challenge. Here we present VARIFI, a pipeline for finding reliable genetic variants (single nucleotide polymorphisms (SNPs) and insertions and deletions (indels)). We optimized parameters in VARIFI by analyzing more than 170 amplicon-sequenced cancer samples produced on the Personal Genome Machine (PGM). In contrast to existing pipelines, VARIFI combines different analysis methods and, based on their concordance, assigns a confidence score to each identified variant. Furthermore, VARIFI applies variant filters for biases associated with the sequencing technologies (e.g., incorrectly identified homopolymer-associated indels with Ion Torrent). VARIFI automatically extracts variant information from publicly available databases and incorporates methods for variant effect prediction. VARIFI requires little computational experience and no in-house compute power since the analyses are conducted on our server. VARIFI is a web-based tool available at varifi.cibiv.univie.ac.at.

» https://doi.org/10.3390/jpm9010010

» Kalyna Lab

Welcome Felipe dos Santos Maraschin!

The Kleine-Vehn lab is currently hosting Prof. Felipe dos Santos Maraschin from the Federal University of Rio Grande do Sul (Porto Alegre, Brazil). In the frame of an ERC project, the labs are collaborating on light signalling in roots.

» https://www.researchgate.net/profile/Felipe_Maraschin

» Kleine-Veh Lab

Impromptu seminar by Toshiki Kameyama

"Cancer-specific aberrant mRNA re-splicing and its repressors: What are the splicing termination mechanisms destroyed in cancer cells?"
(Fujita Health University, Japan)

Talk synopsis:
"We have recently discovered the cancer-specific aberrant splicing that occurs through re-splicing in the mature spliced mRNAs.  In normal cells, spliced mRNA must export to the cytoplasm to serve as a template for the protein biosynthesis. However, such mature mRNA is spliced again and generates aberrant truncated mRNA in cancer cells.  This finding implicates the control mechanism to prevent deleterious extra mRNA splicing that must operate in normal cells.  We are currently identifying repressor candidates of mRNA re-splicing." 

About speaker:
Toshiki Kameyama is an Assistant Professor at the Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Japan. His research focuses on aberrant splicing in cancer and transcriptional and post-transcriptional regulation of gene expression in the nervous system development and in neurological diseases.

27. February 2019, 11:00 am
Seminarraum Angewandte Genetik (MUG2-04/54)
Muthgasse 18, 1190 Wien

Publication from Strauss Lab

"A novel laminar-flow-based bioaerosol test system to determine biological sampling efficiencies of bioaerosol samplers"

In this work, we describe a novel type of bioaerosol test system based on a laminar airflow chamber that provides a homogenous aerosol of microbial cells with known concentrations and defined culturability to bioaerosol samplers positioned in the chamber. In the system, three control and monitoring points (CMPs) are implemented in which the number and culturability of microbes can be determined by combining optical particle counting with microscopic and culture-based microbiological analyses... 

» https://doi.org/10.1080/02786826.2018.1562151 

» Strauss Lab

Paper from BiMM and Schüller Lab with AKH

"Antifungal susceptibility of yeast blood stream isolates collected during a 10 year period in Austria"

Candida‐associated infections put a significant burden on western health care systems. Development of (multi‐) resistant fungi can become untreatable and threaten especially vulnerable target groups, such as the immunocompromised.

We assessed antifungal susceptibility and explored possible influence factors of clinical Candida isolates collected from Austrian hospitals between 2007 and 2016

» https://doi.org/10.1111/myc.12892

» BiMM Bioactive Microbial Metabolites

» Schüller Lab

Publication with contribution from Hauser Lab

"Comparative “phenol-omics” and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments"


  • UV-B exposure increased expression of flavonoid and UVR8 genes
  • Accumulation of most phenolics occurred 36 h after UV-B irradiation
  • 60 min-UVB-exposure determined a greater phenolic accumulation than 10 min-UVB
  • Flavonoids, particularly anthocyanins, were the most UV-B-affected phenolics
  • UV-B treatment determined a higher complexity level of anthocyanins after 36 h

» https://doi.org/10.1016/j.plaphy.2018.11.009

» Hauser Lab

Publication with contribution from Adam Lab

"The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics."

A clinical case in Belgium demonstrated that feeding a feed concentrate containing considerable levels of deoxynivalenol (DON, 1.13 mg/kg feed) induced severe liver failure in 2- to 3-month-old beef calves. Symptoms disappeared by replacing the highly contaminated corn and by stimulating ruminal development via roughage administration. A multi-mycotoxin contamination was demonstrated in feed samples collected at 15 different veal farms in Belgium...

» https://doi.org/10.1007/s00204-018-2368-8

» Adam Lab

Publication with contribution from Adam Lab

"Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread"


  • Deoxynivalenol (DON) is mostly stable during the baking process.
  • isoDON, norDON B and norDON C were identified as DON degradation products.
  • The major thermal degradation product of DON is isoDON.
  • isoDON is far less toxic to ribosomes than DON.

» https://doi.org/10.1016/j.foodchem.2018.11.150

» Adam Lab

Publication from Adam Lab

"Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging trichothecenes and common deoxynivalenol-derivatives"

Immunoassay based techniques are an important and fast option for the detection and quantification of mycotoxins. They are frequently used as on-site screening tools in grain elevators, storage and production facilities. However, accurate quantification may be hampered by the co-recognition of structurally related metabolites by the used antibodies. Therefore, it is crucial to assess their cross-reactivity to avoid misinterpretation of the results...

» https://www.wageningenacademic.com/doi/pdf/10.3920/WMJ2018.2363

» Adam Lab

International PhD Programme “Biomolecular Technology of Proteins (BioToP)”

at the Vienna Institute of BioTechnology of BOKU
University of Natural Resources and Life Sciences, Vienna, Austria

» fully-funded PhD student positions for three years

BioToP offers an inter- and multi-disciplinary research-based doctoral education at the interface of basic and applied science in the field of protein biotechnology.
BioToP offers a challenging scientific environment with state-of-the-art facilities and provides comprehensive and thorough up-to-date research training in the fields of:

  • structure-function analysis, engineering and design of proteins
  • protein synthesis, targeting and post-translational modifications
  • expression systems and cell factories
  • bioinformatics and molecular modelling

The BioToP-specific educational programme comprises lectures, seminars and instructional courses that complement the research work in the participating groups. Highly qualified and motivated students of any nationality are invited to apply for the 3-year studentships. Funding will be according to the salary scheme of the Austrian Science Fund.
Additionally students will receive funding for research stays abroad and for the participation at international conferences.

Further information on research projects as well as application guidelines and forms are available at:  http://biotop.boku.ac.at

Application deadline: February 13th, 2019

Publication from Lena Studt (Strauss Lab)

"The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea"


  • T-DNA insertion in the virulence-attenuated mutant PA2810 disrupts bckdm1.
  • Bckdm1 encodes a putative histone 3 lysine 36-specific demethylase. 
  • Bckdm1 is required for virulence, stress responses and photomorphogenesis.
  • Orthologs from other Ascomycetes cannot replace BcKDM1.

» https://doi.org/10.1016/j.fgb.2018.11.003

» Strauss Lab

Impromptu Seminar of Dr. Surinder Chopra

"Maize and Sorghum Flavonoid Pigments: From Genetic and Epigenetic Markers to Plant Health Applications"
(Penn State University, Department of Plant Sciences)

The goal of Dr. Surinder Chopra’s research is to develop a better understanding of metabolic coordination and role of secondary metabolites in plant developmental process as well as plant resistance to biotic and abiotic stresses. His group uses a flavonoid biosynthetic pathway in maize and sorghum as a model system. The research has led to the identification of a genetic factor that is involved in the biosynthesis of a class of plant flavonoid compounds, which act as anti-fungal agents in sorghum. These antifungal metabolites are also known as phytoalexins and in sorghum these compounds belong to the 3-deoxyanthocyanidin category. The group is now generating sorghum and maize mutants and introgression lines/over expression breeding lines to understand the regulation of defense compounds. In addition to the biotic stress, they are screening and developing new sorghum accessions that are tolerant to colder climatic regions.

19. December 2018, 11:00-11:45
Seminarraum Angewandte Genetik (MUG2-04/54)
Muthgasse 18, 1190 Wien

Guest Professor at the DAGZ

David Cánovas research interests are focused on the signals that control fungal development and reproduction using Aspergillus nidulans and Neurospora crassa as model organisms.

941001 VU Genetics of fungal development (in Eng.)  BOKU online
06.12.2018 - 14.12.2018, UFT Tulln, 3 ECTS

  • 06.12.2018: 09:00 14:00 (Lab E2.4.170)
  • 07.12.2018: 09:00 14:00 (Lab E2.4.170)
  • 10.12.2018: 09:00 15:00 (Lab E2.4.170)
  • 11.12.2018: 09:00 15:00 (Lab E2.4.170)
  • 12.12.2018: 09:00 14:00 (Lab E2.4.170)
  • 13.12.2018: 09:00 14:00 (Lab E2.4.170)
  • 14.12.2018: 09:00 14:00 (Lab E2.4.170)

David Cánovas studied Pharmacology at the University of Sevilla and received his Ph.D. degree in Pharmacology with a focus on Molecular and Cellular Biology in 1999. He received further training as a postdoc, first in environmental microbiology and then in fungal genetics, in the National Center for Biotechnology – CSIC (Madrid, Spain) and the University of Melbourne (Australia). He was appointed as a tenure track (within the competitive national “Ramon y Cajal” program) in the Department of Genetics – University of Sevilla in 2008. He was appointed Associate Professor in 2012. Currently he is associate editor of several international journals. 

He was recently the recipient of a Lise Meitner project from the FWF to study the role of nitric oxide in fungal reproduction at the DAGZ, which finished in 2017 and has already resulted in several publications.

Preprint from Kalyna Lab

"Remote control of alternative splicing in roots through TOR kinase"

For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Chloroplasts trigger retrograde signals that control alternative splicing in leaves and roots in response to light. 


Kalyna Lab

Publication From Strauss Lab

"Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites"

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans


Strauss Lab

DAGZ Seminar 11.12.2018

Alexander Jones
Sainsbury Laboratory

"The makings of a gradient: visualising plant hormones in vivo""

Tuesday 11.12.2018
09:00 am
DAGZ seminar room (4th floor, Muthgasse 18, 1190 Wien) 
Host: Sascha Waidmann

Kleine-Vehn Lab

BiRT Lecture Series

Dr. Jan-Peter George

BFW Bundesforschungszentrum für Wald

Institut für Waldgenetik "Molecular genetics reveal putative adaptive variation in resistance against Chrysomyxa rhododendri in Norway spruce" Thursday November 22nd, 2018

Time: 10:00

Campus Tulln / UFT – Seminar Room 14

Host: Joseph Strauss & Markus Gorfer Strauss Lab


VIBT Seminar

Kris Vissenberg
IMPRES (Integrated Molecular Plant physiology Research)
Biology Department, University of Antwerp, Belgium

"Control of root hair development in Arabidopsis thaliana"

Friday 09.11.2018, 13:00
DAGZ seminar room (MUG2-04/54)
Host: Marie-Theres Hauser

Hauser Lab

BiRT Seminar Series „die Welt der biologischen Interaktionen“

Friedrich Kragler Univ. Doz. Dr.
Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm Germany

"Lost in translation: messenger RNA moving to distant tissues"

Wann: 14. November 2018, 10:00
Wo: Campus Tulln / UFT – Seminarraum 17'
Host: Christoph Schüller

Schüller Lab

Die BiMM und das Internet der Pilze

Auf der Suche nach Links im Internet der Pilze 
Können Schimmelpilze Informationen über die Abwehr von Bakterien an das gesamte Pilznetzwerk weitergeben und speichern?
Die Antwort auf diese Frage könnte bei der Entwicklung neuer Antibiotika und Krebstherapien helfen » zum Artikel

Strauss Lab

BiMM Bioactive Microbial Metabolites

Publication from Kalyna Lab

"PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in Arabidopsis thaliana"

Splicing of pre-mRNAs is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple mRNA isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined...

The article has been chosen as a highlight for the December issue of GENETICS. http://www.genetics.org/content/210/4/NP


Kalyna Lab

Publication from Schüller Lab

"A constitutive active allele of the transcription factor Msn2 mimicking low PKA activity dictates metabolic remodeling in yeast"

In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates and cell growth in concordance with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyzed the role of the PKA-Msn2 signaling module by using an Msn2 allele that harbors serine to alanine substitutions at six functionally important PKA motifs (Msn2A6)...


Schüller Lab

FWF Einzelprojekt für Richard Strasser

"Der Oligosaccharyltransferase-Komplex von Pflanzen"

Projektnummer: P 31920 Einzelprojekte

ProjektleiterIn: Richard STRASSER

Kuratoriumssitzung: 01.10.2018

Strasser Lab

“Endoplasmic reticulum-associated degradation of glycoproteins”

Richard Strasser talks about “Endoplasmic reticulum-associated degradation of glycoproteins” at the GMI seminar.

Friday, 19 October 2018, 11:30am @ GMI, Orange Seminar Room.

Gregor Mendel Institute of Molecular Plant Biology GmbH
Dr. Bohr-Gasse 3, 1030 Vienna

Strasser Lab

BiRT Seminar Series „die Welt der biologischen Interaktionen“

Prof. Ivo Frébort
Palacký University Olomouc, Czech Republic

"Plants as a tool for sustainable global development - Genetic improvement of barley and molecular farming"

Wann: 18. Oktober 2018, 9:30
Wo: Campus Tulln / UFT – Seminarraum 14

Publication from Strauss Lab

Fungus found floating in the Danube river - now identified and described by BiMM team as new fungal species: 
"Metapochonia lutea, a new species isolated from the Danube river in Austria"

A new species Metapochonia lutea (Ascomycota, Hypocreales) is described and illustrated. This fungus differs from the other taxa in the genus Metapochonia by its production of intensive yellow pigment in culture, conidiophores with relatively complex verticillate branching, bean-shaped conidia, and by delayed development of one-celled and prominent thick-walled submerged chlamydospores usually in chains or irregular clusters of 3–5 cells... 


Strauss Lab

Publication from Adam Lab

"Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells."

DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group)...


Adam Lab

Publication from Adam Lab

"New Plasmids for Fusarium Transformation Allowing Positive-Negative Selection and Efficient Cre-loxP Mediated Marker Recycling"

In filamentous fungi such as Fusarium graminearum, disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre-loxP system... 


Adam Lab

Hands-on Exhibition for children "Earth & Soil"

Our department is a cooperation partner for an upcoming exhibition of the Zoom museum.
This hands on exhibition on "Earth and Soil" is for children ages 6-12.
Running time: 27. September 2018 - 24. February 2019

Zoom Kindermuseum

Kleine-Vehn Lab

Congratulations Verena!

Congratulation to Verena Unterwurzacher to finalzing her PhD Thesis with an excellent defense!
Thesis was done over the last years in collaboration with the AIT group of Markus Gorfer.
Topic: "Development of a multiplex qPCR detection systems for fungal indoor contamination"

Strauss Lab


At the 10th ÖGMBT meeting Somanath Kallolimath was awarded with the ÖGMBT Life Science PhD Award 2018 (sponsored by THP medical products).

Steinkellner Lab

WKO Preis 2018 für Andreas Schüller (Strauss Lab)

Andreas Schüller stellt sein Projekt vor, welches mit dem Wirtschaftskammerpreis 2018 an der BOKU ausgezeichnet wurde. Es geht um die Etablierung eines neuen Systems zur gezielten Aktivierung und Entdeckung von bioaktiven Stoffen in filamentösen Pilzen.


Strauss Lab

"Development of the Next Generation Influenza Vaccine"

Seminar of Marc-André D’Aoust Vice-President, Research and Innovation Medicago, inc, CAN

Thurs, 4th Oct 2018, 2 pm
Seminar room Department of Applied Genetics and Cell Biology (Muthgasse 18, 4th floor)

Host: Herta Steinkellner, Richard Strasser, Alexandra Castilho


The BOKU (Jürgen Kleine-Vehn), GMI (Yasin Dagdas) and the University of Vienna (Verena Ibl) have organized (4th-7th September 2018) together the 21st Meeting of the European Network of Plant Endomembrane Research (ENPER)  #ENPER 2018
150 plant cell biologists attended the meeting.

» Kleine-Vehn Lab
» Dagdas Lab
» Ibl Lab

FWF Project for Lena Studt 

"Role of the histone variant H2A.Z in phytopathogenic fusaria"

project number:  I 3911 Internationale Projekte

decision board: 25.06.2018

» Lena Studt

Publication from Seifert Lab

"A speculation on the tandem fasciclin 1 repeat of FLA4 proteins in angiosperms"

The Arabidopsis thaliana Fasciclin like arabinogalactan protein 4 (FLA4) locus is required for normal root growth in a linear genetic pathway with the FEI1 and FEI2 loci coding for receptor-like kinases. The two Fas1 domains of FLA4 are onserved among angiosperms but only the C-terminal Fas1 domain is required for genetic function...

» https://doi.org/10.1080/15592324.2018.1507403

» Seifert Lab

»Just cut it - an easy way to turn a negative regulator to positive mode-of-action« Publication from Strauss Lab

"Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator"

The filamentous fungus Trichoderma reesei is a natural producer of cellulolytic and xylanolytic enzymes and is therefore industrially used. Many industries require high amounts of enzymes, in particular cellulases. Strain improvement strategies by random mutagenesis yielded the industrial ancestor strain Rut-C30... 

» https://doi.org/10.1186/s40694-018-0059-0

» Strauss Lab

Publication from Schüller Lab

"Competition of Candida glabrata against Lactobacillus is Hog1 dependent"

Candida glabrata is a common human fungal commensal and opportunistic pathogen. This fungus shows remarkable resilience as it can form recalcitrant biofilms on indwelling catheters, has intrinsic resistance against azole antifungals and is causing vulvo‐vaginal candidiasis. As a nosocomial pathogen, it can cause life‐threatening bloodstream infections in immune‐compromised patients... 

» https://doi.org/10.1111/cmi.12943

» Schüller Lab

Publication from Hauser Lab

"Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions"

Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISPR/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously... 

» https://doi.org/10.1038/s41598-018-30711-3

» Hauser Lab

Publication from Lena Studt (Strauss Lab)

"Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiation‐specific transcription factor gene ABA1 in Fusarium fujikuroi"

Here we present the identification and characterisation of the H3K4‐specific histone methyltransferase Set1 and its counterpart, the Jumonji C demethylase Kdm5, in the rice pathogen Fusarium fujikuroi. While Set1 is responsible for all detectable H3K4me2/me3 in this fungus, Kdm5 antagonises the H3K4me3 mark. Notably, deletion of both SET1 and KDM5 mainly resulted in the upregulation of genome‐wide transcription, also affecting a large set of secondary metabolite (SM) key genes... 

» https://doi.org/10.1111/1462-2920.14339

» Strauss Lab

Preprint from Korbei Lab

"TOL proteins mediate vacuolar sorting of the borate transporter BOR1 in Arabidopsis thaliana"

Boron (B) is an essential micronutrient for plants, however, it shows cytotoxicity at high concentrations. A borate transporter BOR1 is required for efficient transport of boron (B) toward the root stele in Arabidopsis thaliana. BOR1 shows polar localization in the plasma membrane of various root cells toward the stele-side under B limitation. 

» https://doi.org/10.1101/342345

» Korbei Lab

Josef Glössl zum Urteil des Europäischen Gerichtshofs über den Einsatz neuer Mutagenese Methoden:

"Ich bin von diesem Urteil sehr enttäuscht, weil ich es in den wesentlichen Punkten nicht für sachlich begründet und nachvollziehbar halte"

zum Artikel  

zum Urteil im Wortlaut

Gesichter der BOKU - David Cánovas

Interview mit David Cánovas Mitarbeiter Fungal Genomics Unit - Universitäts- und Forschungszentrum Tulln


» Strauss Lab

Publication from Adam Lab

"Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates"

The sulfated forms of the Fusarium toxin deoxynivalenol (DON), deoxynivalenol-3-sulfate (DON-3-Sulf) and deoxynivalenol-15-sulfate (DON-15-Sulf) were recently described, however little is known about their mechanism of action in mammalian cells... 

» https://doi.org/10.1016/j.toxlet.2018.07.007

» Adam Lab

PhD Defense of Julia Richter  - passed with distinction!

"The role of cell wall integrity receptors in responses to heavy metals"

Zeit: Mittwoch, 11.07.2018, 10:00
Ort: Seminarraum Angewandte Genetik (MUG2-04/54)
Muthgasse 18, 4. Stock

Supervisor: Marie-Theres Hauser

Publication from Mach Lab

"The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities"

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown.

» https://doi.org/10.1515/hsz-2018-0186

» Mach Lab

FWF Elise-Richter Programm for Elena Feraru

Auxin homeostasis in plant organ responses to high temperature

project number: V 690 Richter-Programm

decision board: 25.06.2018

» Elena Feraru

FWF Elise-Richter Programm for Doris Lucyshyn

O-GlcNAc and O-fucose binding plant lectins

project number: V 658 Richter-Programm

decision board: 25.06.2018

» Lucyshyn Lab

FWF Stand-Alone Project for Christian Luschnig

Ubiquitin E3 Ligases and Cell Polarity in Arabidopsis

project number: P 31493 Einzelprojekte

decision board: 25.06.2018

» Luschnig Lab

Agrargenetik und Biodiversität - Exkursion 20.06.2018

Das war auch heuer wieder ein spannender Exkursionstag im Zoo Schönbrunn mit Vorträgen und Backstage-Führungen für unsere Studierenden des Bachelorstudiums Agrarwissenschaften.
Die Themen: Warum ist Biodiversität nur mit genetischer Diversität denkbar, warum ist Artenschutz essentiell und was sind die Gründe für die „Kernschmelze der Agrar-Biodiversität“ in den letzten Jahrzehnten? 

Diese und viele weitere Fragen wurden von den Studierenden mit den Veranstaltern diskutiert. Ein Angebot des DAGZ im Zuge der Lehrveranstaltung "941091 Agrargenetik und Biodiversität - Exkursion". 

Publication from Steinkellner Lab

"Advanced Plant-Based Glycan Engineering"

With respect to biomanufacturing, glycosylation is one of the most addressed post-translational modifications, since it is well-known that the attachment of sugar residues efficiently affects protein homogeneity and functionality. Much effort has been taken into engineering various expression systems to control glycosylation and to generate molecules with targeted sugar profiles. 

» https://doi.org/10.3389/fbioe.2018.00081

» Steinkellner Lab

Vortrag zum Thema "Der EU-Sortenschutz, gewerblicher Rechtsschutz für Pflanzensorten"

Der dazu eingeladene Experte, Dirk Theobal kommt vom Gemeinschaftlichen Sortenamt (CPVO) und wird über die Funktionsweise des gemeinschaftlichen Systems zum Schutz von Pflanzensorten, die technischen Schutzanforderungen an Sorten und die rechtlichen Verfahren berichten (die Agenda finden Sie im Anhang)

Donnerstag, 14.06.2018, von 09:00 bis 12:00 Uhr  

Department für Angewandte Genetik und Zellbiologie (DAGZ): Muthgasse 18, (MUG2-04/54)

Publication from Seifert Lab

"Fascinating Fasciclins: A Surprisingly Widespread Family of Proteins that Mediate Interactions between the Cell Exterior and the Cell Surface"

The Fas1 proteins act as mediators between the cell and its environment and function in similar fashion in processes as diverse as human brain cancer and pollen formation in plants.This review for the first time compares the biology of Fas1 proteins from all kingdoms of life.

» https://doi.org/10.3390/ijms19061628

» Seifert Lab

Josef Glössl zum stellvertretenden Vorsitzenden des Universitätsrats der Medizinischen Universität Innsbruck gewählt  

Professor Josef Glössl, gerade eben aus dem Rektorat der BOKU (Vizerektor für Forschung und Internationale Beziehungen) an das DAGZ zurückgekehrt, wurde vor Kurzem zum stellvertretenden Vorsitzenden des Universitätsrats der Medizinischen Universität Innsbruck gewählt. 

Herzliche Gratulation!

» Universitätsrat der Medizinischen Universität Innsbruck 

Visit from the Wake Forest University

Elizabeth Sarkel, a junior biochemistry and molecular biology major from Columbus, Ohio is joining the Kleine-Vehn Lab again this summer. Elizabeth received a Fulbright Program fellowship and will work on gravitropic set point angle of lateral roots.


• The Fulbright Program @FulbrightPrgrm
• Wake Forest University @WakeForest
• Kleine-Vehn Lab  @KleineVehnLab 

FWF-Project for Herta Steinkellner

IgG Subclass Glycosylation

Project lead: Herta Steinkellner

I 3721 Internationale Projekte
Start: 01.06.2018

Publication from Seifert Lab

"Mad moves of the building blocks – nucleotide sugars find unexpected paths into cell walls" 

This short review tracks the unexpectedly yet purposefully complex, intracellular journey of an activated sugar before it safely reaches its destination in plant fibre polysaccharides.

» https://doi.org/10.1093/jxb/ery026

» Seifert Lab

Publication from Kleine-Vehn Lab

"The Road to Auxin-Dependent Growth Repression and Promotion in Apical Hooks"

The phytohormone auxin controls growth rates within plant tissues, but the underlying mechanisms are still largely enigmatic. The apical hook is a superb model to understand differential growth, because it displays both auxin-dependent growth repression and promotion. In this special issue on membranes, we illustrate how the distinct utilization of vesicle trafficking contributes to the spatial control of polar auxin transport, thereby pinpointing the site of growth repression in apical hooks.

» https://doi.org/10.1016/j.cub.2018.01.069

» Kleine-Vehn Lab

Publication from Kleine-Vehn Lab

"PIN7 Auxin Carrier Has a Preferential Role in Terminating Radial Root Expansion in Arabidopsis thaliana"

Directional growth of lateral roots is critical for radial expansion and soil coverage. Despite its importance, almost nothing is known about its molecular determinants. Initially, young lateral roots (LRs) grow away from the parental root, maintaining the angle acquired shortly after emergence. A second downwards bending response to gravity terminates the so-called plateau phase and thereby limits radial root expansion 

» doi:10.3390/ijms19041238

» Kleine-Vehn Lab

Publication from Hauser Lab

"Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation" 

One of the main mechanisms blocking translation after stress situations is mediated by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2), performed in Arabidopsis by the protein kinase GCN2 which interacts and is activated by ILITHYIA(ILA). ILA is involved in plant immunity and its mutant lines present phenotypes not shared by the gcn2 mutants

» doi.org/10.1016/j.jplph.2018.04.003

» Hauser Lab

Faszination Pflanze: Warum die Karotte orange ist

Jürgen Kleine-Vehn im Blog der Junge Akademie der ÖAW über die Faszination Pflanze.

Hier geht es zum »Blog  

• Jürgen Kleine-Vehn  @KleineVehnLab 
• Junge Akademie der ÖAW  @ya_OeAW

Book on Root Development edited by Elke Barbez (Kleine-Vehn Lab)

This detailed volume provides diverse elegant methods, complemented with existing protocols, which are optimized for the current needs in plant root biology as well as for use in plant species other than Arabidopsis thaliana. The collection covers methods ranging from genetic screens, phenotypic analysis, and cell biology methods to systems biology tools and genome-wide approaches. The collection contains a range of complexity from fundamental methods for quantification of different root developmental processes to complex methods that require sophisticated equipment  » Methods in Molecular Biology, vol 1761

Publication from Korbei Lab and Kleine-Vehn Lab

Immunoprecipitation of Membrane Proteins from Arabidopsis thaliana Root Tissue

Here, we present different methods for immunoprecipitating membrane proteins of Arabidopsis thaliana root material. We describe two extraction methods for the precipitation either for an integral membrane protein of the endoplasmic reticulum (ER) or a peripheral membrane protein partially localized at the plasma membrane, where we precipitate the protein out of the total membrane as well as total cytosolic fractions  » doi.org/10.1007/978-1-4939-7747-5_16

Publication from Kleine-Vehn Lab

Growth Rate Normalization Method to Assess Gravitropic Root Growth

Time-lapse imaging of roots is highly suitable for depicting gravitropic growth behaviors. However, roots may show faster or slower bending kinetics when compared to control as a result of differences in overall root growth. Accordingly, conditions that cause differential organ growth require growth rate normalization to compare gravitropic curvature  » doi.org/10.1007/978-1-4939-7747-5_15

Publication from Kleine-Vehn Lab

Cortical Cell Length Analysis During Gravitropic Root Growth

The typical parameter used to evaluate the root growth response to gravity is the degree of root bending in time. This employs the quantification of the root tip angle toward gravity and, hence, does not directly assess the actual differential growth process. Here, we describe the cortical cell length as a parameter to quantify cell elongation during the gravitropic response, using median longitudinal confocal sections  » doi.org/10.1007/978-1-4939-7747-5_14

Congratulations Alexandra!

New FWF Stand-Alone Project: 

N. benthamiana ß-galactosidases acting on glycoproteins

Project lead: Alexandra Castilho

Publication from Adam Lab

UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-D-glucosides

Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited  » full text

PhD Defense of Somanath Kallolimath

Production of recombinant proteins with polysialylated N-glycans in Nicotiana benthamiana

23.02.2018 - 14:00
DAGZ-Seminarroom (MUG2-04/54)
Muthgasse 18, 4th floor

Supervisor: Herta Steinkellner

PhD Defense of Chloé Béziat

Characterization of PILS putative intracellular auxin carrier family during developmental processes in Arabidopsis

22.02.2018 - 14:30
DAGZ-Seminarroom (MUG2-04/54)
Muthgasse 18, 4th floor

Supervisor: Jürgen Kleine-Vehn

Publication from Steinkellner/Strasser Lab

An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinantglycoproteins produced in Nicotiana benthamiana.

N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central protein-complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER)  » doi.org/10.1111/pbi.12906

Publication from Adam Lab:

Chemical synthesis of culmorin metabolites and their biologic role in culmorin and acetyl-culmorin treated wheat cells

The Fusarium metabolite culmorin (1) is receiving increased attention as an “emerging mycotoxin”. It cooccurs with trichothecene mycotoxins and potentially influences their toxicity. Its ecological role and fate in plants is unknown. We synthesized sulfated and glucosylated culmorin conjugates as potential metabolites, which are expected to be formed in planta, and used them as reference compounds. An efficient procedure for the synthesis of culmorin sulfates was developed  » DOI: 10.1039/c7ob02460f

Publication from Strasser Lab

The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins.

A great number of soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in posttranslational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD)  » doi.org/10.1111/tpj.13851

Publication from Hauser Lab:

Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots

Background and Aims
Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied  » doi.org/10.1093/aob/mcx220

Pre-print from Elena Feraru (Kleine-Vehn Lab):

PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana

Global warming is threatening plant productivity, because plant growth is highly sensitive to elevated temperatures. High temperature (HT) triggers the auxin biosynthesis-dependent growth in aerial tissues. On the other hand, the contribution of auxin to HT-induced root growth is currently under debate. Here we show that the putative intracellular auxin carrier PIN-LIKES 6 (PILS6) is a negative regulator of organ growth and that its abundance is highly sensitive to HT  » get the pre-print